ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСТ Р МЭК 62464-2—

2020

ОБОРУДОВАНИЕ МАГНИТНО-РЕЗОНАНСНОЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИЦИНСКОГО ИЗОБРАЖЕНИЯ

Часть 2

Критерии классификации импульсной последовательности

(IEC 62464-2:2010, IDT)

Настоящий проект стандарта не подлежит применению до его утверждения

Москва Стандартинформ 2020

Предисловие

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Российский научно-технический центр информации по стандартизации, метрологии и оценке соответствия» (ФГУП «СТАНДАРТИНФОРМ»), Государственным бюджетным учреждением здравоохранения города Москвы «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы» (ГБУЗ «НПКЦ ДиТ ДЗМ») и Обществом с ограниченной ответственностью «Медтехстандарт» (ООО «Медтехстандарт») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 011 «Медицинские приборы, аппараты и оборудование»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 г. №
- 4 Настоящий стандарт идентичен международному стандарту МЭК 62464-2:2010 «Оборудование магнитно-резонансное для получения медицинского изображения. Часть 2. Критерии классификации импульсной последовательности» (IEC 62464-2:2010 «Magnetic resonance equipment for medical imaging Part 2: Classification criteria for pulse sequences», IDT).

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные Соответствующая информация, уведомление стандарты». тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

© Стандартинформ, оформление, 2020

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область распространения
2 Нормативные ссылки
3 Термины и определения
4 Классификация ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ
4.1 Общие положения
4.2 Тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ
4.3 Управление намагниченностью
4.4 Размерность
4.5 Количество эхо-сигналов
Приложение А (справочное) Примеры использования классификации
ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ
Приложение ДА (справочное) Сведения о соответствии ссылочных международных
стандартов национальным стандартам
Библиография
Алфавитный указатель терминов на русском языке

Введение

В настоящее время ИЗГОТОВИТЕЛИ МР-ОБОРУДОВАНИЯ используют для обозначения ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ названия, которые взяты из литературы (например, СПИН-ЭХО), либо определены самим ИЗГОТОВИТЕЛЕМ (например, FISP: быстрое отображение с стационарной свободной прецессией). В отсутствие стандарта по классификации ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, специальная терминология ИЗГОТОВИТЕЛЕЙ усложняет сравнение ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ.

Стандарт DICOM позволяет включать информацию по ИМПУЛЬСНЫМ ПОСЛЕДОВАТЕЛЬНОСТЯМ в цифровые изображения МАГНИТНОГО РЕЗОНАНСА (MP). Эта информация помогает в интерпретации изображений. Однако стандарт DICOM допускает использование специальной терминологии ИЗГОТОВИТЕЛЯ.

Настоящий стандарт устанавливает краткую независимую от ИЗГОТОВИТЕЛЯ схему классификации ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ для получения МР изображения.

С точки зрения получения МР изображения, ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ – это хронологический порядок появления РЧ-импульсов, переключения градиентных полей и сбора данных с целью создания одного или нескольких изображений. Поскольку временная диаграмма определяет контраст изображения, возможность появления артефактов изображения и другие свойства изображения, необходимо установить последовательную и точную классификацию ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ.

Предложенная система классификации для ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ может быть реализована в виде DICOM тега в дополнение к существующему названию ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ в соответствии со специальной терминологией ИЗГОТОВИТЕЛЯ. Это облегчит доступ конечных пользователей к этой информации. Реализация в качестве нового тега обеспечит обратную совместимость.

Настоящий стандарт идентичен международному стандарту МЭК 62464-2:2010 подготовленному подкомитетом 62В МЭК «Оборудование для диагностической визуализации» Технического комитета ТК 62 «Электрооборудование в медицинской практике».

Текст МЭК 62464-2:2010 основан на следующих документах:

Проект комитета для голосования	Отчет о голосовании
62B/807/FDIS	62B/816/RVD

Полную информацию о голосовании по одобрению МЭК 62464-2:2010 можно найти в отчете о голосовании, указанном в приведенной выше таблице.

Редакция международного стандарта подготовлена в соответствии с Директивами ИСО/МЭК, часть 2.

В настоящем стандарте приняты следующие шрифтовые выделения:

- требования и определения прямой шрифт;
- методы испытаний курсив;
- информационный материал, приведенный вне таблиц (примечания, примеры и справочная информация), а также нормативный текст таблиц шрифт уменьшенного размера;
- ТЕРМИНЫ, ОПРЕДЕЛЕННЫЕ В РАЗДЕЛЕ 3 ОБЩЕГО СТАНДАРТА И В НАСТОЯЩЕМ СТАНДАРТЕ ЗАГЛАВНЫЕ БУКВЫ.

Глагольные формы, используемые в настоящем стандарте, совпадают по форме с описанными в приложении Н Директив ИСО/МЭК (часть 2).

Значение вспомогательных глаголов:

- «должен» соответствие требованиям или испытаниям обязательно для соответствия настоящему стандарту;
- «следует» соответствие требованиям или испытаниям рекомендовано, но не обязательно для соответствия настоящему стандарту;
- «может» описание допустимых путей достижения соответствия требованиям или испытаниям.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБОРУДОВАНИЕ МАГНИТНО-РЕЗОНАНСНОЕ ДЛЯ ПОЛУЧЕНИЯ МЕДИЦИНСКОГО ИЗОБРАЖЕНИЯ

Часть 2

Критерии классификации импульсной последовательности

Magnetic resonance equipment for medical imaging. Part 2. Classification criteria for pulse sequences

Дата введения — 20 - -

1 Область распространения

Настоящий стандарт определяет описание ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ для получения изображения на основе МАГНИТНОГО РЕЗОНАНСА.

Примечание — Классификация, представленная в настоящем стандарте, подходит для:

- тендерной документации;
- описания изображений;
- описания протокола;
- технической документации.

Настоящий стандарт не применим к МАГНИТНО-РЕЗОНАНСНОЙ спектроскопии. Классификация не затрагивает вопросы, связанные с контрастом изображения (взвешенности по Т1, Т2, протонной плотности), так как она определяется параметрами ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ (например, время повторения, время регистрации эхо-сигнала) и не является свойством только ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ. Классификация для ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ не определяет схему сбора данных К-ПРОСТРАНСТВА, алгоритмы реконструкции или постобработки.

201.2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанные издания. Для недатированных ссылок применяют самые последние издания (включая любые изменения).

IEC 60601-2-33:2010, Medical electrical equipment – Part 2-33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis (Изделия медицинские электрические. Часть 2-33. Частные требования безопасности с учетом основных функциональных характеристик к медицинскому диагностическому оборудованию, работающему на основе магнитного резонанса)

IEC 60788:2004, Medical electrical equipment – Glossary of defined terms (Изделия медицинские электрические. Словарь)

201.3 Термины и определения

В настоящем стандарте применены термины по МЭК 60601-2-33:2010 и МЭК 60788:2004, а также следующие термины с соответствующими определениями:

3.1 **импульсная последовательность** (pulse sequence): Хронологическая последовательность появления радиочастотных импульсов, переключения градиентного магнитного поля и сбора данных для генерации одного или нескольких МАГНИТНО-РЕЗОНАНСНЫХ изображений.

Примечание — Термины «последовательность визуализации» или «последовательность» иногда используются как синонимы для ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

- 3.2 **поперечная намагниченность** (transverse magnetisation): Составляющая вектора намагниченности, перпендикулярная направлению постоянного магнитного поля.
- 3.3 **продольная намагниченность** (longitudinal magnetisation): Составляющая вектора намагниченности, параллельная направлению постоянного магнитного поля.
- 3.4 **k-пространство** (k-space): Математическое пространство, в котором представлено преобразование Фурье для матрицы изображений.

Примечание — Это пространство может быть заполнено данными измерений как полностью, так и частично.

3.5 **спин-эхо** (spin-echo, SE): Перефокусированная ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ, возникающая в момент *T* после подачи возбуждающего РЧ-импульса и дополнительного РЧ-импульса в момент *T/2*.

Примечание – Импульс возбуждения обычно представляет собой 90° РЧ-импульс, а дополнительный импульс, служащий для перефокусировки – 180° РЧ-импульс. Сигнал SE можно перефокусировать, используя последовательность дополнительных РЧ-импульсов.

3.6 **градиент-эхо** (gradient-echo, GR): Рефокусированная ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ после возбуждающего РЧ импульса с использованием расфазирующих и дефазирующих градиентов магнитного поля.

201.4 Классификация ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

4.1 Общие положения

ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ вращается с частотой Лармора, пропорциональной величине статического магнитного поля. Прецессирующая ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ генерирует МР сигнал, регистрируемый приемными радиочастотными катушками. Для обеспечения пространственной локализации прецессирующая ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ кодируется по фазе с помощью наложения пространственных градиентов на основное статическое магнитное поле до начала сбора данных, а частотное кодирование также с помощью градиентных магнитных полей используется во время сбора данных. Полученный сигнал затем сохраняется в соответствующе строке К-ПРОСТРАНСТВА матрицы необработанных (первичных 'raw') данных.

К-ПРОСТРАНСТВО может быть двухмерным (2D) или трехмерным (3D). Существует несколько алгоритмов, позволяющих восстанавливать изображения из неполных наборов данных К-ПРОСТРАНСТВА (половинный или частичный метод Фурье, техника параллельной визуализации) — в классификации ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ эти методы не рассматриваются.

ИМПУЛЬСНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ классифицируются по следующим критериям:

- а) модификация намагниченности (необязательно): определяется как ПРОДОЛЬНАЯ НАМАГНИЧЕННОСТЬ или ПОПЕРЕЧНАЯ НАМАГНИЧЕННОСТЬ;
- b) тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ: СПИН-ЭХО или ГРАДИЕНТ-ЭХО с количеством повторений (или серий) и количеством заполненных линий К-ПРОСТРАНСТВА за одно РЧ возбуждение;
 - с) размерность сбора данных: 2D или 3D;
- d) число эхо-сигналов (необязательно): количество различных эхо-сигналов, которые используются для расчета отдельных изображений.

Для этих классификаторов используются следующие обозначения (без пробелов):

<Модификация намагниченности> – <Размерность сбора данных> – <тип</p>
ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ> – <Число эхо-сигналов>

4.2 Тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

4.2.1 Общие положения

ИМПУЛЬСНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ создают МР изображения, чье поведение сигнала определяется в основном СПИН-ЭХО (SE) или ГРАДИЕНТ-ЭХО (GR). Тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ определяется в центре 2D- или 3D- К-ПРОСТРАНСТВА: если центр К-ПРОСТРАНСТВА заполняется с помощью СПИН-ЭХО, то ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ в настоящем стандарте классифицируют как СПИН-ЭХО ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ. Если центр К-ПРОСТРАНСТВА заполнен не с помощью СПИН-ЭХО, то ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ классифицируют в настоящем стандарте как ГРАДИЕНТ-ЭХО ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ.

Более точная классификация типа ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ достигается путем предоставления информации о других линиях К-ПРОСТРАНСТВА. Поэтому приведено количество СПИН-ЭХО и ГРАДИЕНТ-ЭХО на РЧ-возбуждение.

Некоторые характеристики изображения зависят от того, полностью ли заполнено К-ПРОСТРАНСТВО после одного РЧ-импульса или требуется многократное РЧ-возбуждение, поэтому также указывается количество РЧ-импульсов.

4.2.2 Условные обозначения

Для СПИН-ЭХО ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ используют следующие обозначения:

<Тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ>: (SE_<Показатель1> GR_<Показатель2>)_<Показатель3>

Для ГРАДИЕНТ-ЭХО ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ используют следующие обозначения:

<Тип ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТЬ>: (GR_<Показатель1> SE <Показатель2>) <Показатель3>

Здесь, <Показатель1> и <Показатель2> обозначают число СПИН-ЭХО и ГРАДИЕНТ-ЭХО, соответственно. Значения <Показателя1> и <Показателя2> могут быть либо целыми числами, либо формулами переменных N и M с использованием знаков «+», «-», «/» и «х». Здесь N описывает общее количество линий K-ПРОСТРАНСТВА, а M количество линий K-ПРОСТРАНСТВА, заполненных за одно возбуждение. Часть "GR_<Показатель2>" или "SE_<Показатель2>" опускается, если <Показатель2> равен нулю.

<показатель3> определяет количество необходимых РЧ-возбуждений и задается в виде целого числа или формулы переменных N и M с использованием знаков «+», «-», «/» и «х».

Примечание — Сумма <Показателя1> и <Показателя2> обычно известна как длина последовательности эхо-сигналов, а <Показатель3> часто записывается как количество возбуждений.

4.3 Управление намагниченностью

4.3.1 Общие положения

При необходимости, визуализирующие характеристики ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ контролируются путем добавления импульсов градиентного магнитного поля и РЧ-импульсов или замены отдельных частей ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ. Эти дополнительные градиентные и РЧ-импульсы используются для управления намагниченностью.

Различные методики подготовки намагниченности могут быть объединены. Процесс модификации намагниченности контролирует, главным образом, ПРОДОЛЬНУЮ НАМАГНИЧЕННОСТЬ или ПОПЕРЕЧНУЮ НАМАГНИЧЕННОСТЬ, либо выполняется во время РЧ-возбуждения.

Для классификации вариантов модификации ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ для изменения намагниченности перечисляются все компоненты, которые оказывают дополнительное влияние на характеристики изображения и которые не учитываются в классификации по типу ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ.

4.3.2 Условные обозначения

Изменение намагниченности записывается в виде последовательности символов, как указано в таблице 1:

«Контролирование намагниченности»: «Символ1» — «Символ2» — ... — «СимволN» Если модификация намагничивания не используется, этот классификатор опускается.

Таблица 1 – Методы контролирования намагниченности

Символ	Наименование	Физический принцип
IR	Инверсия-восстановление	Инверсия ПРОДОЛЬНОЙ НАМАГНИЧЕННОСТИ
SR	Насыщение-восстановление	Насыщение ПРОДОЛЬНОЙ НАМАГНИЧЕННОСТИ
T2P	Подготовка Т2	Накопление контраста Т2 в ПРОДОЛЬНОЙ
		НАМАГНИЧЕННОСТИ с использованием,
		например, РЧ-импульсов (90°)–(180°)–(–90°)
T2SP	Подготовка Т2*	Накопление контраста Т2* ПРОДОЛЬНОЙ
		НАМАГНИЧЕННОСТИ с использованием,
		например, импульсов (90°)–ТЕ–(–90°)
SSAT	Спектральная (химическая)	Спектрально-избирательное насыщение спинов
	насыщенность	(например, жир, силикон, вода)
SIR	Спектральная (химическая)	Спектрально-избирательная инверсия спинов
	инверсия	(например, жир, силикон, вода)
MTC	Контраст переноса	Непрямое насыщение сигнала воды с помощью
	намагниченности	переноса намагниченности спинов, связанных с
		макромолекулами, и обменивающихся с
		молекулами воды
RSAT	(Локализованное)	Пространственно-избирательное насыщение
	предварительное	
	насыщение, тэгирование	

RLAB	(Локализованная)	Пространственно-избирательное возбуждение или
	маркировка, спиновая	инверсия для кодирования движущихся спинов
	маркировка	
DE	Управляемое равновесие	РЧ-импульс в конце эхо-последовательности для
		восстановления ПРОДОЛЬНОЙ
		НАМАГНИЧЕННОСТИ
NS	Непространственно	РЧ-импульс без пространственного кодирующего
	избирательное возбуждение	градиента для возбуждения всей намагниченности
		в объеме передающей РЧ-катушки
NRRF	Профильный	Импульс радиочастотного возбуждения с
	(непрямоугольный)	выделенным непрямоугольным профилем среза
	радиочастотный импульс	(например, чтобы избежать эффектов насыщения
		в ангиографии TOF MR или для одновременного
		возбуждения двух срезов)
2DRF	2D селективный РЧ-импульс	РЧ-импульс с пространственной селективностью в
		2 измерениях
SSRF	Пространственно-	Одновременное пространственно и спектрально
	спектральный РЧ-импульс	избирательное возбуждение
DIFF	Диффузионное	Ослабление сигнала дополнительными
	взвешивание	градиентами, которые вызывают дефазирование
		сигнала для диффундирующих спинов
FLOWCn	Компенсация потока	Компенсация n-го момента градиента для
		подавления изменений сигнала, связанных с
		потоком, где n – положительное целое число
FLOWSn	Чувствительность к потоку	Усиление n-го момента градиента для усиления
		изменений сигнала, связанных с потоком, где n –
		положительное целое число
T1R	Спин-лок (Spin lock)	Контраст Т1р дополнительными радиочастотными
		импульсами
SPOIL	Спойлинг (spoiling,	Спойлинг намагниченности по градиенту и/или
	разрушение) ПОПЕРЕЧНОЙ	радиочастоте
	НАМАГНИЧЕННОСТИ	
AREF	Рефокусировка всех	Рефокусировка всех градиентов в пределах
	градиентов	одного интервала TR (сбалансированная
		стационарная прецессия)
PREF	Частичная рефокусировка	Рефокусировка некоторых градиентов в пределах
	градиентов	одного интервала TR
-		

NREF	Рефокусировка градиентов	Рефокусировка градиентов для получения эхо-
	в следующем интервале TR	сигнала в следующем интервале TR
OFFSET	Смещение эха	Смещение времени между СПИН-ЭХО и сбором
		центра К-ПРОСТРАНСТВА
^а Если классификатор FLOWCn не указан явно, ИМПУЛЬСНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ		
не использует компенсацию потока.		

4.4 Размерность

4.4.1 Общие положения

При получении трехмерных данных пространственное кодирование сигнала из объема выполняется во всех трех измерениях, и данные сортируются в 3D К-ПРОСТРАНСТВО. При получении двумерных данных кодирование выполняется только в двух плоскостных измерениях выбранного среза, и заполняется 2D К-ПРОСТРАНСТВО.

4.4.2 Условные обозначения

Размерность для двумерного сбора данных определяется как

<Размерность>: 2D

Для получения трехмерных данных используют следующие обозначения:

<Размерность>: 3D

4.5 Количество эхо-сигналов

4.5.1 Общие положения

После РЧ-возбуждения данные могут быть зарегистрированы при различных временах эха, благодаря чему получаются МР-изображения с разнымиличной контрастностью. Число реконструированных изображений с различной контрастностью классифицируется по количеству эхо.

4.5.2 Условные обозначения

Следующие обозначения используются для обозначения количества эхо:

<Количество эхо>: Е_ <3начение>

<3начение> это целое число. Если <3начение> равно 1, то этот классификатор опускается.

Приложение AA (справочное)

Примеры использования классификации ИМПУЛЬСНЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

В таблице А.1 приведены примеры применения настоящего стандарта к наименованиям ИМПУЛЬСНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ, характерных для ряда ИЗГОТОВИТЕЛЕЙ.

Таблица А.1 – Примеры классификаций, конкретных ИЗГОТОВИТЕЛЕЙ

Дженерал Электрик	Хитачи	Филипс	Сименс	Тошиба	Настоящий стандарт
EPI	GE EPI	Единичный кадр FFE-EPI	FID-EPI	EPI	2D-(GR_ <i>N</i>)_1
EPI	SE EPI	Единичный кадр SE-EPI	SE-EPI	EPI	2D-(SE_1-GR_ <i>N</i> -1)_1
FGRE-ET	Мульти кадр EPI	Мульти кадр EPI	Сегментиро- ванный EPI	Мульти-кадр ЕРІ	2D-(GR_ <i>M</i>)_ <i>N/M</i>
СПИН-ЭХО	СПИН-ЭХО	СПИН-ЭХО	СПИН-ЭХО	СПИН-ЭХО	2D-(SE_1)_ <i>N</i>
SS-FSE	Единичный кадр FSE	Единичный кадр TSE	HASTE/RARE	FASE	2D-(SE_N)_1
Быстрый СПИН-ЭХО	Быстрый СПИН-ЭХО	Турбо СПИН-ЭХО	Турбо СПИН-ЭХО	FSE	2D-(SE_M)_N/M
Быстрое двойное эхо СПИН ЭХО		<tbd></tbd>	<tbd></tbd>		2D-(SE_ <i>M</i>)_ <i>N/M</i> -E_2
FLAIR/STIR	FLAIR/STIR	FLAIR/STIR	FLAIR/STIR	FLAIR/STIR	IR-2D-(SE_M)_N/M
GRASE	-	GRASE	TGSE	Гибридный EPI	2D-(SE_1-GR_ <i>M</i> -1)_ <i>N/M</i>
Испорченный GRASS	RSSG	T1-FFE	FLASH	FE	SPOIL-2D-(GR_1)_N
GRASS	SARGE	FFE	FISP	FE	PREF-2D-(GR_1)_N
FIESTA	BASG	Сбалансиро- ванный FFE	Истинный FISP	Истинный SSFP	AREF-2D-(GR_1)_N
SSFP	TRSG	T2-FFE	PSIF	SSFP	NREF-2D-(GR_1)_N

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов национальным стандартам

Таблица ДА.1

Обозначение ссылочного	Степень	Обозначение и наименование соответствующего
международного стандарта	соответствия	национального стандарта
IEC 60601-2-33:2010	IDT	ГОСТ Р МЭК 60601-2-33—2013 «Изделия медицинские электрические. Часть 2-33. Частные требования безопасности с учетом основных функциональных характеристик к медицинскому диагностическому оборудованию, работающему на основе магнитного резонанса»
IEC 60788:2004	IDT	ГОСТ Р МЭК/ТО 60788–2009 «Изделия медицинские электрические. Словарь»

Примечание – В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

- IDT – идентичные стандарты.

Библиография

DICOM 2008 standard: Digital Imaging and Communications in Medicine (DICOM) [viewed 2010-07-15]. Available from ftp://medical.nema.org/medical/dicom/2008/

RadLex Term Browser [viewed 2010-07-15]. Available from http://www.radlex.org/viewer

Алфавитный указатель терминов на русском языке

K-ПРОСТРАНСТВО	3.4
ГРАДИЕНТ-ЭХО	3.6
изготовитель	МЭК 60601-1:2005, 3.55
НАМАГНИЧЕННОСТЬ ПОПЕРЕЧНАЯ	
НАМАГНИЧЕННОСТЬ ПРОДОЛЬНАЯ	3.3
ОБОРУДОВАНИЕ МАГНИТНО-РЕЗОНАНСНОЕ	
(МР ОБОРУДОВАНИЕ)	МЭК 60601-2-33:2010, 201.3.218
ПОСЛЕДОВАТЕЛЬНОСТЬ ИМПУЛЬСНАЯ	3.1
РЕЗОНАНС МАГНИТНЫЙ	МЭК 60601-2-33:2010, 201.3.217
СПИН-ЭХО	

УДК 615.47:006.354 OKC 11.040.55

Ключевые слова: магнитно-резонансная томография, магнитный резонанс, спинэхо, градиент-эхо, импульсная последовательность, изображение