МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ГОСТ 25272—

(проект, RU, первая редакция)

АППАРАТЫ РЕНТГЕНОВСКИЕ МЕДИЦИНСКИЕ

Термины и определения

Настоящий проект стандарта не подлежит применению до его утверждения

Москва Российский институт стандартизации 202_

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены».

Сведения о стандарте

1 РАЗРАБОТАН С «Медтехстандарт» (ООО «М	бществом с Иедтехстандарт»)	ограниченной	ответственност	ью
2 ВНЕСЕН Федераль метрологии	ным агентством	по техническому	регулированию	И
3 ПРИНЯТ Межгосуда сертификации (протокол от	•	· · ·	ции, метрологии	ΙИ
За принятие проголосс	эвали:			
Краткое наименование	Код страны по МК		наименование	
страны по МК (ИСО 3166)	(ИСО 3166) 004–97	национальн	ого органа по	
004–97		стандаг	тизации	

4 Philippin	Фодороди ного огонтотро	TO TOYUMUOOKOMY DODKEMDODOUMO M
4 Приказом	• • •	по техническому регулированию и
метрологии от _	202 г. №	межгосударственный стандарт
ΓΟCT 25272-202_	введен в действие в	качестве национального стандарта

5 B3AMEH FOCT 25272-82

Российской Федерации с 202 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернетсайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге «Межгосударственные стандарты»

© Оформление. ФГБУ «РСТ», 202

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Обл	пасть применения
		мины и определения
_		
	2.1	Виды аппаратов
	2.2	Состав рентгеновского аппарата рентгеновский излучатель
	2.3	Рентгеновское питающее устройство
	2.4	Штативные устройства рентгеновского аппарата
	2.5	Приемники рентгеновского излучения
	2.6	Дополнительные устройства и принадлежности медицинских рентгеновских
		аппаратов
	2.7	Режимы работы и параметры рентгеновского аппарата
Aı		витный указатель терминов
ы	иоли	иография

Введение

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.

Для каждого понятия установлен один стандартизованный термин.

Для отдельных стандартизованных терминов в настоящем стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

Краткие формы, представленные аббревиатурой, приведены после стандартизованного термина и отделены от него точкой с запятой.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.

Для сохранения целостности терминосистемы и в связи с отсутствием соответствующих межгосударственных стандартов в настоящем стандарте приведены термины и их определения из IEC 60601-1-3. После определений заимствованных терминов в квадратных скобках указаны источники заимствования.

Приведенные определения можно при необходимости изменить, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приводится, и вместо него ставится прочерк.

В стандарте приведен алфавитный указатель терминов.

Стандартизованные термины набраны полужирным шрифтом, их краткие формы, представленные аббревиатурой, – светлым.

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

АППАРАТЫ РЕНТГЕНОВСКИЕ МЕДИЦИНСКИЕ

Термины и определения

Medical X-ray apparatus. Terms and definitions

Дата введения — 20 - -

1 Область применения

Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области медицинских рентгеновских аппаратов.

Настоящий стандарт не распространяется на импульсные медицинские рентгеновские аппараты с длительностью импульса менее 0,1 мс.

Термины, установленные настоящим стандартом, рекомендуются для применения во всех видах документации и литературы (по данной научно-технической отрасли), входящих в сферу работ по стандартизации и/или использующих результаты этих работ.

2 Термины и определения

2.1 Виды аппаратов

- 2.1.1 рентгеновский аппарат: Совокупность технических средств, предназначенных для получения и использования рентгеновского излучения, состоящая из рентгеновского генератора и устройств и принадлежностей, относящихся к нему.
 - 2.1.2 медицинский рентгеновский аппарат: -
 - 2.1.3 рентгенодиагностический аппарат: -
- 2.1.4 рентгенофлюорографический аппарат (флюорограф): Специализированный диагностический рентгеновский аппарат, предусмотренное назначение которого заключается в получении изображения органов грудной клетки вертикально расположенных пациентов в прямой и/или боковой проекциях при массовых профилактических обследованиях.
- 2.1.5 **цифровой флюорограф:** Флюорограф, обеспечивающий получение изображения органов грудной клетки с помощью цифрового приемника рентгеновского изображения.
- 2.1.6 маммографический рентгеновский аппарат (маммограф): Рентгеновский аппарат, предусмотренное назначение которого заключается в получении изображения молочной железы.
- 2.1.7 **цифровой маммограф:** Маммографический рентгеновский аппарат, обеспечивающий получение изображения молочной железы с помощью цифрового приемника рентгеновского изображения.
- 2.1.8 **дентальный рентгеновский аппарат:** Рентгеновский аппарат, предусмотренное назначение которого заключается в получении изображения зубов и челюстей.
- 2.1.9 **цифровой дентальный рентгеновский аппарат:** Дентальный рентгеновский аппарат, обеспечивающий получение изображения зубов и челюстей с помощью цифрового приемника рентгеновского изображения.
- 2.1.10 **урологический рентгеновский аппарат:** Рентгеновский аппарат, предназначенный для рентгеновского исследования мочеполовой системы.
- 2.1.11 **хирургический рентгеновский аппарат**: Рентгеновский аппарат предназначенный для рентгеновского исследования в хирургии и интраоперационного контроля.

- 2.1.12 рентгенотерапевтический аппарат: Медицинский рентгеновский аппарат, предназначенный для лечения рентгеновским излучением.
- 2.1.13 дальнедистанционный рентгенотерапевтический аппарат: Рентгенотерапевтический аппарат, предназначенный для дистанционного облучения внутренних органов.
- 2.1.14 **близкодистанционный рентгенотерапевтический аппарат**: Рентгенотерапевтический аппарат, предназначенный для облучения кожных покровов и тканей, расположенных в непосредственной близости от кожных покровов.
- 2.1.15 **внутриполостной рентгенотерапевтический аппарат:** Рентгенотерапевтический аппарат, предназначенный для контактного облучения внутренних органов посредством введения излучателя в полости организма.
- 2.1.16 **стационарный рентгеновский аппарат:** Рентгеновский аппарат, конструкция которого предусматривает его постоянное использование в одном месте и постоянное присоединение к питающей сети.
- 2.1.17 перевозимый рентгеновский аппарат: Рентгеновский аппарат, постоянно установленный и эксплуатируемый на средствах транспорта.
- 2.1.18 передвижной рентгеновский аппарат: Рентгеновский аппарат, конструкция которого предусматривает возможность его перемещения.
- 2.1.19 **переносной рентгеновский аппарат:** Передвижной рентгеновский аппарат, конструкция которого предусматривает переноску аппарата усилиями не более двух человек.
- 2.1.20 разборный рентгеновский аппарат: Передвижной рентгеновский аппарат, конструкция которого предусматривает многократную сборку и разборку с целью перемещения.

2.2 Состав рентгеновского аппарата рентгеновский излучатель

2.2.1

РЕНТГЕНОВСКАЯ ТРУБКА (X-RAY TUBE): Электровакуумное устройство для генерирования РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ путем бомбардировки МИШЕНИ, которая обычно находится в АНОДЕ, ЭЛЕКТРОНАМИ, исходящими из КАТОДА и ускоряемыми электрическим полем.

Пример – РЕНТГЕНОВСКАЯ ТРУБКА С ВРАЩАЮЩИМСЯ АНОДОМ, двухфокусная РЕНТГЕНОВСКАЯ ТРУБКА.

[IEC 60601-1-3:2021, пункт 3,83]

2.2.2 защитный кожух рентгеновской трубки: Устройство для размещения рентгеновской трубки, защиты от высокого напряжения и неиспользуемого рентгеновского излучения.

2.2.3

РЕНТГЕНОВСКИЙ ИЗЛУЧАТЕЛЬ (X-RAY TUBE ASSEMBLY): КОЖУХ РЕНТГЕНОВСКОЙ ТРУБКИ с установленной в нем РЕНТГЕНОВСКОЙ ТРУБКОЙ

[IEC 60601-1-3:2021, пункт 3,84]

- 2.2.4 моноблочный рентгеновский излучатель: Рентгеновский излучатель, в котором рентгеновская трубка и генераторное устройство объединены общим защитным кожухом.
- 2.2.5 окно рентгеновского излучателя: Место выхода рабочего пучка рентгеновского излучения из излучателя.

2.3 Рентгеновское питающее устройство

2.3.1 рентгеновское питающее устройство; РПУ: Система всех компонентов, необходимых для управления и производства электрической энергии, питающей рентгеновскую трубку, обычно состоящая из высоковольтного генератора и комплекса управления.

Примечание — Наряду с термином «рентгеновское питающее устройство; РПУ» может быть использован термин «устройство рентгеновское питающее; УРП».

- 2.3.2 однополупериодное рентгеновское питающее устройство: Однофазное рентгеновское питающее устройство, в котором для питания анодной цепи рентгеновской трубки используют одну полуволну напряжения.
- 2.3.3 двухполупериодное рентгеновское питающее устройство: Однофазное рентгеновское питающее устройство, в котором для питания анодной цепи рентгеновской трубки используют обе полуволны напряжения.
- 2.3.4 рентгеновское питающее устройство с шестифазным выпрямлением: Трехфазное рентгеновское питающее устройство, в котором применяют одну трехфазную мостовую схему выпрямления или две последовательные схемы без взаимного сдвига.
- 2.3.5 рентгеновское питающее устройство с двенадцатифазным выпрямлением: Трехфазное рентгеновское питающее устройство, в котором применяют две последовательные трехфазные мостовые схемы со сдвигом 30°.
- 2.3.6 генераторное устройство (рентгеновского аппарата): Часть рентгеновского питающего устройства, служащая для получения и преобразования напряжения для питания катодной и анодной цепи рентгеновской трубки.
- 2.3.7 пульт управления (рентгеновского аппарата): Устройство для управления и контроля электрического питания рентгеновской трубки и элементов аппарата.
- 2.3.8 реле времени (рентгеновского аппарата): Реле времени, обеспечивающее прерывание питания анодной цепи рентгеновской трубки после заданного времени выдержки.
- 2.3.9 реле количества электричества (рентгеновского аппарата): Реле количества электричества, обеспечивающее прерывание питания цепи рентгеновской трубки после того, как по этой цепи пройдет заданное количество электричества.
- 2.3.10 реле дозы (рентгеновского аппарата): Реле дозы излучения, обеспечивающее прерывание облучения по достижении заданной дозы рентгеновского излучения.
- 2.3.11 реле экспозиции (рентгеновского аппарата): Реле экспозиции, обеспечивающее прерывание облучения после того, как рентгеновская пленка получит заданную дозу облучения.
- 2.3.12 переключатель рабочих мест (рентгеновского аппарата): Переключатель на пульте управления рентгеновского аппарата, при помощи которого рентгеновский излучатель рабочих мест соединяют с питающим устройством.

- 2.3.13 переключатель блока управления (рентгеновского аппарата): Переключатель на пульте управления рентгеновского аппарата для предварительного выбора блока управления.
- 2.3.14 переключатель режима работы рентгеновской трубки: Переключатель на пульте управления рентгеновского аппарата для предварительной установки режима работы рентгеновской трубки.

2.4 Штативные устройства рентгеновского аппарата

- 2.4.1 **штативное устройство (рентгеновского аппарата):** Штативное устройство, служащее для поддержания, приведения в рабочее положение и перемещения рентгеновского излучателя и/или приемника излучения совместно или по отдельности.
- 2.4.2 рентгеновский штатив: Устройство для поддержания и перемещения рентгеновского излучателя и элементов аппарата.
- 2.4.3 телеуправляемое штативное устройство (рентгеновского аппарата): Штативное устройство рентгеновского аппарата с дистанционным управлением.
- 2.4.4 **рентгенотерапевтический штатив:** Рентгеновский штатив, обеспечивающий необходимое перемещение рентгеновского излучателя относительно пациента при проведении терапии.
- 2.4.5 поворотный рентгеновский стол-штатив: Штативное устройство рентгеновского аппарата с укрепленным на нем рентгеновским излучателем, предназначенное для исследования пациента в разных положениях.
- 2.4.6 стойка снимков: Штативное устройство рентгеновского аппарата, предназначенное для размещения приемника рентгеновского излучения и его ориентации относительно пациента.
- 2.4.7 **рентгеновский томограф:** Штативное устройство рентгеновского аппарата для получения послойного изображения томограмм.
- 2.4.8 продольный рентгеновский томограф: Рентгеновский томограф, позволяющий получать изображение слоя в плоскости, расположенной параллельно оси тела пациента.
- 2.4.9 поперечный рентгеновский томограф: Рентгеновский томограф, позволяющий получать изображение слоя в плоскости, перпендикулярной к оси тела пациента.
- 2.4.10 панорамный рентгеновский томограф: Рентгеновский томограф, позволяющий получать развернутое послойное изображение.

- 2.4.11 **вычислительный рентгеновский томограф:** Рентгеновский томограф, предназначенный для получения изображения слоя тела или головы, основанный на синтезе изображения, построенного ЭВМ по определенным значениям коэффициентов поглощения рентгеновского излучения в рассматриваемом слое.
- 2.4.12 **стол снимков:** Стол, предназначенный для размещения и взаимной ориентации пациента и приемника рентгеновского излучения.
- 2.4.13 стол для катетеризации: Стол, предназначенный для размещения пациента при исследованиях с помощью катетеров кровеносных сосудов и сердца.
- 2.4.14 рентгенотерапевтический стол: Стол, предназначенный для размещения пациента во время проведения рентгенотерапии.
- 2.4.15 дека штативного устройства (рентгеновского аппарата): Опорная поверхность штативного устройства рентгеновского аппарата, служащая для размещения пациента.
- 2.4.16 плавающая дека штативного устройства (рентгеновского аппарата): Подвижная дека штативного устройства рентгеновского аппарата, имеющая устройство для линейных перемещений пациента.
- 2.4.17 **рентгенотомографическая приставка:** Приспособление к рентгенодиагностическому аппарату, предназначенное для получения изображения выделяемого слоя.
- 2.4.18 **флюорографическая кабина:** Защитная кабина, предназначенная для размещения пациента при массовых флюорографических исследованиях.
- 2.4.19 экрано-снимочное рентгеновское устройство: Элемент поворотного рентгеновского стола-штатива, стойки снимков, стола снимков, позволяющий осуществлять просвечивание с быстрым переходом к снимкам на предварительно выбранный целый или деленный формат пленки.

2.5 Приемники рентгеновского излучения

- 2.5.1 флюоресцирующий рентгеновский экран: Рентгеновский экран, покрытый флюоресцирующим веществом, испускающим видимый свет при облучении рентгеновским излучением.
- 2.5.2 усиливающий рентгеновский экран: Флюоресцирующий рентгеновский экран, используемый для усиления действия рентгеновского излучения на рентгеновскую пленку.
- 2.5.3 электрорентгенографическое устройство: Устройство, использующее метод электрорентгенографии для получения рентгеновского изображения.

- 2.5.4 рентгеновская кассета: Кассета для размещения рентгеновских пленок, предназначенная для получения рентгенограмм либо томограмм.
- 2.5.5 устройство для рентгеновских серийных снимков: Устройство, предназначенное для производства полноформатных рентгенограмм с большой частотой съемки.
- 2.5.6 флюорографическая камера: Устройство, предназначенное для получения фотоснимков с рентгеновского экрана в уменьшенном масштабе и включающее экран, оптическую систему и механизм перемещения пленки в светозащитном корпусе.
- 2.5.7 усилитель рентгеновского изображения; УРИ: Устройство, в котором за счет дополнительных источников энергии, не связанных с рентгеновским излучением, происходит рентгенооптическое преобразование и усиление изображения.
- 2.5.8 **приемники на основе ПЗС-матрицы(матриц):** Приемники, работающие по схеме: люминесцентный экран светосильный объектив(ы) ПЗС-матрица(ы).
- 2.5.9 плоскопанельный цифровой рентгеновский приемник: Приемник матричного типа прямого или непрямого преобразования рентгеновского излучения, не содержащий оптических или электронно-оптических элементов для изменения геометрии изображения в процессе его преобразования.

2.6 Дополнительные устройства и принадлежности медицинских рентгеновских аппаратов

- 2.6.1 стабилизатор яркости рентгеновского изображения: Устройство, регулирующее мощность дозы рентгеновского излучения для поддержания заданного постоянного уровня яркости выходного экрана приемника рентгеновского излучения.
- 2.6.2 рентгеновская диафрагма: Устройство для формирования пучка рентгеновского излучения заданных размеров и формы.
- 2.6.3 постоянная рентгеновская диафрагма: Рентгеновская диафрагма с отверстием постоянных формы и размеров.
- 2.6.4 регулируемая рентгеновская диафрагма: Рентгеновская диафрагма, обеспечивающая возможность изменения размеров и/или формы отверстия.
- 2.6.5 глубинная рентгеновская диафрагма: Совокупность рентгеновских диафрагм, размещенных на различном расстоянии от фокуса рентгеновской трубки на пути рабочего пучка, снабженная дополнительным устройством для экранирования афокального рентгеновского излучения.
- 2.6.6 автоматическая рентгеновская диафрагма: Регулируемая рентгеновская диафрагма с электроприводом, обеспечивающим автоматическое ограничение пучка

заданными размерами при изменении расстояния фокус-пленка и формата приемника рентгеновского излучения.

- 2.6.7 рентгеновский тубус: Приспособление для формирования пучка рентгеновского излучения заданных размеров и формы.
- 2.6.8 фильтр рентгеновского излучения: Совокупность поглощающих сред, предназначенных для ослабления рентгеновского излучения и изменения его спектрального состава.
- 2.6.9 собственный фильтр рентгеновского излучателя: Совокупность поглощающих сред, через которые проходит рабочий пучок до внешней поверхности рентгеновского излучателя.
- 2.6.10 дополнительный фильтр рентгеновского излучателя: Фильтр рентгеновского излучения, помещаемый вне защитного кожуха рентгеновского излучателя в рабочем пучке рентгеновского излучения/
- 2.6.11 общий фильтр: Совокупность собственного и дополнительного фильтров рентгеновского излучателя.
- 2.6.12 **фильтр Тореуса:** Фильтр, состоящий из набора пластин со слоями из олова, меди и алюминия.
- 2.6.13 клиновидный рентгеновский фильтр: Фильтр в виде клина, предназначенный для дифференциального ослабления различных частей пучка рентгеновского излучения.
- 2.6.14 **рентгеновский отсеивающий растр**: Приспособление, служащее для уменьшения доли рассеянного рентгеновского излучения в рабочем пучке рентгеновского излучения.
- 2.6.15 рентгенотерапевтическая решетка: Приспособление для неравномерного облучения с помощью свинцовой пластины, имеющей ряд отверстий, поставленной на пути пучка так, что основной пучок рентгеновского излучения разбивается на ряд отдельных пучков.
- 2.6.16 рентгеновская решетка: Приспособление для производства рентгеновских снимков, включающее в себя отсеивающий рентгеновский растр.
- 2.6.17 автоматизированное рабочее место; APM: Комплекс устройств и специального программного обеспечения для визуального представления, анализа, обработки и хранения медицинских флюорографических изображений с сопроводительной информацией.

- 2.7 Режимы работы и параметры рентгеновского аппарата
- 2.7.1 повторно-кратковременный режим работы (рентгеновского аппарата): Режим работы рентгеновского аппарата, при котором рабочие периоды чередуются со сравнимыми по длительности перерывами.
- 2.7.2 кратковременный режим работы (рентгеновского аппарата): Повторнократковременный режим работы рентгеновского аппарата с длительностью рабочего периода во много раз меньше последующего перерыва.
- 2.7.3 длительный режим работы (рентгеновского аппарата): Режим работы рентгеновского аппарата при минимальном времени 2,5 ч.
- 2.7.4 импульсный режим работы (рентгеновского аппарата): Режим работы рентгеновского аппарата, при котором рентгеновское излучение генерируется отдельными импульсами.
- 2.7.5 непрерывный режим работы (рентгеновского аппарата): Режим работы рентгеновского аппарата, при котором рентгеновское излучение генерируется непрерывно.
- 2.7.6 режим падающей нагрузки (рентгеновского аппарата): Режим, при котором мощность, выделяемая на аноде рентгеновской трубки, изменяется согласно предварительно заданной рабочей характеристике.
- 2.7.7 номинальная потребляемая мощность (рентгеновского аппарата): Указываемая изготовителем наибольшая мощность, потребляемая рентгеновским аппаратом из питающей сети.
- 2.7.8 выходная мощность (рентгеновского аппарата): Мощность, отдаваемая рентгеновским аппаратом рентгеновской трубке или двум рентгеновским трубкам при их одновременной работе в анодной цепи.
- 2.7.9 номинальная мощность (рентгеновского аппарата) при повторнократковременном режиме работы: Указываемая изготовителем наибольшая мощность, которую рентгеновский аппарат может отдавать рентгеновской трубке при номинальном напряжении во время рабочих периодов при заданной длительности рабочих периодов и перерывов.
- 2.7.10 кратковременная номинальная мощность (рентгеновского аппарата): Указываемая изготовителем наибольшая мощность, которую рентгеновский аппарат может отдавать рентгеновской трубке при времени включения 0,1 с, напряжении на трубке 100 кВ или при номинальном напряжении, если оно менее 100 кВ, и при определенном сопротивлении сети.

- 2.7.11 диаграмма направленности излучения рентгеновской трубки: Пространственное распределение интенсивности в пучке рентгеновского излучения трубки.
- 2.7.12 пульсация напряжения (рентгеновского аппарата): Отношение разности наибольшего и наименьшего за период значений пульсирующего напряжения на выходе генераторного устройства к наибольшему значению напряжения, выраженное в процентах.
- 2.7.13 угол рентгеновской томографии: Угол между перпендикуляром к плоскости приемника рентгеновского излучения и прямой от основания этого перпендикуляра до фокуса рентгеновской трубки, находящейся в крайнем наклонном рабочем положении во время проведения томографического обследования.

2.7.14

РАССТОЯНИЕ ОТ ФОКУСНОГО ПЯТНА ДО ПРИЕМНИКА ИЗОБРАЖЕНИЯ (FOCAL SPOT TO IMAGE RECEPTOR DISTANCE): Расстояние от ОПОРНОЙ ПЛОСКОСТИ ЭФФЕКТИВНОГО ФОКУСНОГО ПЯТНА до точки пересечения ОПОРНОЙ ОСИ с плоскостью приемника изображения.

[IEC 60601-1-3:2021, пункт 3.25]

2.7.15

РАССТОЯНИЕ ФОКУС-КОЖА (FOCAL SPOT TO SKIN DISTANCE): В МЕДИЦИНСКОЙ РАДИОЛОГИЧЕСКОЙ ДИАГНОСТИКЕ – расстояние от ОПОРНОЙ ПЛОСКОСТИ ЭФФЕКТИВНОГО ФОКУСНОГО ПЯТНА до плоскости, нормальной к ОПОРНОМУ НАПРАВЛЕНИЮ и содержащей точку на поверхности ПАЦИЕНТА, ближайшую к ИСТОЧНИКУ ИЗЛУЧЕНИЯ.

[IEC 60601-1-3:2021, пункт 3.26]

- 2.7.16 **степень** размазывания рентгенотомографического изображения: Отношение площади тени размазывания при томографии к площади тени объекта при неподвижном центральном положении системы излучатель приемник рентгеновского излучения.
- 2.7.17 **число полос рентгеновского растра:** Число поглощающих пластин растра на 1 см.
- 2.7.18 геометрическое отношение рентгеновского растра: Отношение высоты поглощающих пластин растра к расстоянию между ними.

ГОСТ 25272-202_ (проект, RU, первая редакция)

2.7.19 фокусное расстояние рентгеновского растра: Расстояние от поверхности растра до линии, на которой сходятся плоскости пластин растра.

Алфавитный указатель терминов

аппарат рентгеновский	2.1.1
аппарат рентгеновский дентальный	2.1.8
аппарат рентгеновский дентальный цифровой	2.1.9
аппарат рентгеновский маммографический	2.1.6
аппарат рентгеновский медицинский	2.1.2
аппарат рентгеновский перевозимый	2.1.17
аппарат рентгеновский передвижной	2.1.18
аппарат рентгеновский переносной	2.1.19
аппарат рентгеновский разборный	2.1.20
аппарат рентгеновский стационарный	2.1.16
аппарат рентгеновский урологический	2.1.10
аппарат рентгеновский хирургический	2.1.11
аппарат рентгенодиагностический	2.1.3
аппарат рентгенотерапевтический	2.1.12
аппарат рентгенотерапевтический близкодистанционный	2.1.14
аппарат рентгенотерапевтический внутриполостной	2.1.15
аппарат рентгенотерапевтический дальнедистанционный	2.1.13
аппарат рентгенофлюорографический	2.1.4
APM	2.6.17
дека штативного устройства	2.4.15
дека штативного устройства рентгеновского аппарата	2.4.15
дека штативного устройства плавающая	2.4.16
дека штативного устройства рентгеновского аппарата плавающая	2.4.16
диаграмма направленности излучения рентгеновской трубки	2.7.11
диафрагма рентгеновская	2.6.2
диафрагма рентгеновская автоматическая	2.6.6
диафрагма рентгеновская глубинная	2.6.5
диафрагма рентгеновская постоянная	2.6.3
диафрагма рентгеновская регулируемая	2.6.4
ИЗЛУЧАТЕЛЬ РЕНТГЕНОВСКИЙ	2.2.3
излучатель рентгеновский моноблочный	2.2.4
кабина флюорографическая	2.4.18
камера флюорографическая	2.5.6
кассета рентгеновская	2.5.4
кожух рентгеновской трубки защитный	2.2.2
маммограф	2.1.6

ГОСТ 25272–202_ (проект, RU, первая редакция)

маммограф цифровой	2.1.7
место рабочее автоматизированное	2.6.17
мощность выходная	2.7.8
мощность номинальная кратковременная	2.7.10
мощность потребляемая номинальная	2.7.7
мощность при повторно-кратковременном режиме работы	2.7.9
номинальная	2.7.9
мощность рентгеновского аппарата выходная	2.7.8
мощность рентгеновского аппарата номинальная кратковременная	2.7.10
мощность рентгеновского аппарата потребляемая номинальная	2.7.7
мощность рентгеновского аппарата при повторно-кратковременном	2.7.9
режиме работы номинальная	2.7.9
окно рентгеновского излучателя	2.2.5
отношение рентгеновского растра геометрическое	2.7.18
переключатель блока управления	2.3.13
переключатель блока управления рентгеновского аппарата	2.3.13
переключатель рабочих мест	2.3.12
переключатель рабочих мест рентгеновского аппарата	2.3.12
переключатель режима работы рентгеновской трубки	2.3.14
приемники на основе ПЗС-матриц	2.5.8
приемники на основе ПЗС-матрицы	2.5.8
приемник рентгеновский плоскопанельный цифровой	2.5.9
приставка рентгенотомографическая	2.4.17
пульсация напряжения	2.7.12
пульсация напряжения рентгеновского аппарата	2.7.12
пульт управления	2.3.7
пульт управления рентгеновского аппарата	2.3.7
расстояние рентгеновского растра фокусное	2.7.19
РАССТОЯНИЕ ОТ ФОКУСНОГО ПЯТНА ДО ПРИЕМНИКА ИЗОБРАЖЕНИЯ	2.7.14
РАССТОЯНИЕ ФОКУС-КОЖА	2.7.15
растр отсеивающий рентгеновский	2.6.14
режим падающей нагрузки	2.7.6
режим падающей нагрузки рентгеновского аппарата	2.7.6
режим работы длительный	2.7.3
режим работы импульсный	2.7.4
режим работы кратковременный	2.7.2
режим работы непрерывный	2.7.5
режим работы повторно-кратковременный	2.7.1

ГОСТ 25272–202_ (проект, RU, первая редакция)

режим работы рентгеновского аппарата длительный	2.7.3
режим работы рентгеновского аппарата импульсный	2.7.4
режим работы рентгеновского аппарата кратковременный	2.7.2
режим работы рентгеновского аппарата непрерывный	2.7.5
режим работы рентгеновского аппарата повторно-кратковременный	2.7.1
реле времени	2.3.8
реле времени рентгеновского аппарата	2.3.8
реле дозы	2.3.10
реле дозы рентгеновского аппарата	2.3.10
реле количества электричества	2.3.9
реле количества электричества рентгеновского аппарата	2.3.9
реле экспозиции	2.3.11
реле экспозиции рентгеновского аппарата	2.3.11
решетка рентгеновская	2.6.16
решетка рентгенотерапевтическая	2.6.15
РПУ	2.3.1
стабилизатор яркости рентгеновского изображения	2.6.1
степень размазывания рентгенотомографического изображения	2.7.16
стойка снимков	2.4.6
стол для катетеризации	2.4.13
стол рентгенотерапевтический	2.4.15
стол снимков	2.4.12
стол-штатив рентгеновский поворотный	2.4.5
томограф рентгеновский	2.4.7
томограф рентгеновский вычислительный	2.4.11
томограф рентгеновский панорамный	2.4.10
томограф рентгеновский поперечный	2.4.9
томограф рентгеновский продольный	2.4.8
ТРУБКА РЕНТГЕНОВСКАЯ	2.2.1
тубус рентгеновский	2.6.7
угол рентгеновской томографии	2.7.13
УРИ	2.5.7
усилитель рентгеновского изображения	2.5.7
устройство генераторное	2.3.6
устройство генераторное рентгеновского аппарата	2.3.6
устройство для рентгеновских серийных снимков	2.5.5
устройство питающее рентгеновское	2.3.1
устройство питающее рентгеновское двухполупериодное	2.3.3

ГОСТ 25272–202_ (проект, RU, первая редакция)

устройство питающее рентгеновское однополупериодное	2.3.2
устройство питающее рентгеновское с двенадцатифазным	2.3.5
выпрямлением	2.3.3
устройство питающее рентгеновское с шестифазным выпрямлением	2.3.4
устройство рентгеновское экрано-снимочное	2.4.19
устройство штативное рентгеновского аппарата	2.4.1
устройство штативное телеуправляемое	2.4.3
устройство штативное телеуправляемое рентгеновского аппарата	2.4.3
устройство электрорентгенографическое	2.5.3
фильтр общий	2.6.11
фильтр рентгеновский клиновидный	2.6.13
фильтр рентгеновского излучателя дополнительный	2.6.10
фильтр рентгеновского излучателя собственный	2.6.9
фильтр рентгеновского излучения	2.6.8
фильтр Тореуса	2.6.12
флюорограф	2.1.4
флюорограф цифровой	2.1.5
число полос рентгеновского растра	2.7.17
штатив рентгеновский	2.4.2
штатив рентгенотерапевтический	2.4.4
экран рентгеновский усиливающий	2.5.2
экран рентгеновский флюоресцирующий	2.5.1

Библиография

[1] IEC 60601-1-3:2021, Medical electrical equipment – Part 1-3: General requirements for basic safety and essential performance – Collateral Standard: Radiation protection in diagnostic X-ray equipment

УДК 621.386:006.354 MKC 11.040.50

Ключевые слова: аппараты рентгеновские, термины, определения, рентгеновское питающее устройство, штативное устройство рентгеновского аппарата, приемник рентгеновского излучения, режим работы