ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО 11712— 202

АНЕСТЕЗИОЛОГИЧЕСКОЕ И ДЫХАТЕЛЬНОЕ ОБОРУДОВАНИЕ

Супрагортанные трубки и соединители

(ISO 11712:2023, IDT)

Настоящий проект стандарта не подлежит применению до его утверждения

Москва Российский институт стандартизации 202

Предисловие

- 1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Медтехстандарт» (ООО «Медтехстандарт») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
- 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 011 «Медицинские приборы, аппараты и оборудование»
- 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 20 г. №
- 4 Настоящий стандарт идентичен международному стандарту ИСО 11712:2023 «Анестезиологическое и дыхательное оборудование. Супрагортанные трубки и соединители» (ISO 11712:2023 «Anaesthetic and respiratory equipment Supralaryngeal airways and connectors», IDT).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные и межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.rst.gov.ru)

© ISO, 2023

© Оформление. ФГБУ «Институт стандартизации», 202_

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1	Обл	ласть применения			
2	Нор	рмативные ссылки			
3	Тер	рмины и определения			
4	Оби	цие требования			
	4.1	Общие положения			
	4.2	Методы испытаний			
5	Мат	ериалы			
	5.1	Общие положения			
	5.2	Испытание на биологическую безопасность			
	5.3	Руководство по материалам, предназначенным для супрагортанных трубок и			
		соединителей			
6	Tpe	бования к конструкции			
	6.1	Общие положения			
	6.2	Положения, используемые для вентиляции			
	6.3	Обозначение размера			
	6.4	Дыхательные выходы			
	6.5	Меры предосторожности против спадения стенок <i>дыхательных путей</i>			
	6.6	Механизмы фиксации			
		Система накачивания/спускания манжеты			
	6.8	Внутренний объем			
	6.9	Максимальный размер изделия			
	6.10) Соединители супрагортанных трубок			
	6.11	I Очистка, дезинфекция и стерилизация			
7	Тре	бования к <i>супрагортанным трубкам</i> и соединителям, поставляемым			
	сте	оильными			
8	Упа	ковка			
9	Инф	рормация, предоставляемая изготовителем			
	9.1	Общие положения			
	9.2	Маркировка супрагортанных трубок			
	9.3	Маркировка на индивидуальной упаковке супрагортанных трубок			
	9.4	Инструкция по эксплуатации			
П	рило	жение А (справочное) Обоснования			
П	рило	жение В (справочное) Оценка и документирование клинической			

ГОСТ Р ИСО 11712-202_

		эффективности у людей
Приложение	С	(обязательное) Методы испытаний для определения устойчивости к
		перегибам
Приложение	D	(справочное) Идентификация опасностей для менеджмента риска
Приложение	Ε	(справочное) Руководство по материалам и конструкции
Приложение	ДА	A (справочное) Сведения о соответствии ссылочных международных
		стандартов национальным и межгосударственным стандартам
Библиографи	1Я.	

Введение

Настоящий стандарт идентичен ИСО 11712:2023, подготовленному подкомитетом SC 2 «Воздуховодные устройства и связанные с ними изделия» Технического комитета по стандартизации ИСО/ТК 121 «Оборудование для анестезии и искусственной вентиляции легких».

Второе издание отменяет и заменяет первое издание (ИСО 11712:2009), которое было технически пересмотрено со следующими изменениями:

- формат настоящего стандарта был изменен для согласования с ИСО 18190; и
- способы проверки соответствия добавлены для каждого требования.

Супрагортанная трубка — это медицинское изделие, вводимое через рот, минуя голосовые связки, предназначенное для герметизации супрагортанной области, изоляции дыхательных путей от газов и жидкостей в глотке и поддержания проходимости дыхательных путей для облегчения вентиляции легких у пациентов, находящихся под наркозом или без сознания, с подачей анестезирующих газов или без нее. Вентиляция легких может быть самопроизвольной, вспомогательной или контролируемой. Настоящий стандарт также распространяется на супрагортанные трубки, предназначенные для обеспечения дыхательных путей и/или для одновременного обеспечения направляющей для интубации трахеальных трубок, бронхоскопов и изделий для аспирации, а также на соединители, помещаемые на стороне аппарата этих изделий.

Примерами *супрагортанных трубок* являются ларингеальные маски, ларингеальные трубки, воздуховоды и уплотнения, орофарингеальные воздуховоды с манжетами и фарингеальные воздуховоды, а также комбинация воздуховод с пищеводным обтуратором.

Требования настоящего стандарта были разработаны с использованием определения опасности для оценки риска, приведенного в приложении D.

Требования к испытаниям и предоставлению информации применяются к *супрагортанным трубкам*, выпущенным на рынок после публикации настоящего стандарта.

Настоящий стандарт составлен в соответствии с форматом ИСО 18190. Требования, изложенные в настоящем стандарте, имеют приоритет над любыми противоречащими им требованиями ИСО 18190.

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

АНЕСТЕЗИОЛОГИЧЕСКОЕ И ДЫХАТЕЛЬНОЕ ОБОРУДОВАНИЕ

Супрагортанные трубки и соединители

Anaesthetic and respiratory equipment. Supralaryngeal airways and connectors

Дата введения — 20 - -

1 Область применения

Примечание — Руководство или обоснование для этого пункта содержится в приложении A.2.

- 1.1 В настоящем стандарте установлены основные требования к конструкции супрагортанных трубок и соединителей. Эти изделия предназначены для обеспечения отдельного дыхательного канала к верхней части гортани, чтобы обеспечить беспрепятственный доступ воздуха пациентам во время самопроизвольной, вспомогательной или контролируемой вентиляции легких.
- 1.2 Настоящий стандарт устанавливает размеры, основные свойства и метод обозначения размеров доступных типов *супрагортманных трубок*. Трубки, разработанные для специализированных применений, конкретно не рассматриваются, хотя большинство из них могут быть классифицированы по размеру (или другим характеристикам), требуемым настоящим стандартом.
- 1.3 Следующие изделия не входят в область применения настоящего стандарта: назальные орофарингеальные воздуховоды, наркозные маски. крикотиротомии, стоматологические назотрахеальные трубки, изделия для приспособления, трахеальные стенты, трахеальные трубки, ларингоскопы, устройства СРАР, пищеводные обтураторы, бужи и устройства, требующие размещения хирургическим путем.

ГОСТ Р ИСО 11712-202_

- 1.4 В настоящем стандарте приведены размеры, чтобы оператор знал, какие вспомогательные изделия, такие как трахеальные трубки и бронхоскопы, будут совместимыми по размерам.
- 1.5 Воспламеняемость дыхательных путей, например, при использовании некоторых легковоспламеняющихся анестезирующих газов, электрохирургических аппаратов или лазеров, является общеизвестной опасностью, которая выходит за рамки настоящего стандарта. (см. Е.1.7).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты [для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных – последнее издание (включая все изменения)]:

ISO 4135, Anaesthetic and respiratory equipment — Vocabulary (Аппараты ингаляционной анестезии и искусственной вентиляции легких. Словарь)

ISO 5356-1, Anaesthetic and respiratory equipment — Conical connectors — Part 1: Cones and sockets (Аппараты ингаляционной анестезии и искусственной вентиляции легких. Соединения конические. Часть 1. Конические патрубки и гнезда)

ISO 18190, Anaesthetic and respiratory equipment — General requirements for airways and related equipment (Аппараты ингаляционной анестезии и искусственной вентиляции легких. Общие требования к воздуховодам и связанным с ними изделиям)

ISO 18562-1, Biocompatibility evaluation of breathing gas pathways in healthcare applications — Part 1: Evaluation and testing within a risk management process (Оценка биосовместимости каналов дыхательных газов в медицинских изделиях. Часть 1. Оценка и проведение испытания в процессе менеджмента риска)

ISO 80369-7, Small-bore connectors for liquids and gases in healthcare applications — Part 7: Connectors with 6 % (Luer) taper for intravascular or hypodermic applications (Соединители малого диаметра для жидкостей и газов, используемые в здравоохранении. Часть 7. Частные требования к соединителям внутрисосудистого или подкожного применения)

3 Термины и определения

В настоящем стандарте применены термины и определения, приведенные в ИСО 4135, ИСО 18190, а также следующие термины с соответствующими определениями.

ИСО и МЭК поддерживают терминологическую базу данных, используемую в целях стандартизации по следующим адресам:

- платформа онлайн-просмотра ИСО, доступна по адресу: https://www.iso.org/obp;
- Электропедия МЭК, доступна по адресу: https://www.electropedia.org/.
- 3.1 **вспомогательное дыхательное отверстие** (auxiliary ventilatory opening): Дополнительное отверстие в *дыхательном канале* (3.11), предназначенное для прохождения дыхательных газов на *стороне пациента* (3.5) или вблизи нее.
- 3.2 **cuff** (манжета): Гибкая часть, постоянно прикрепленная к *супрагортанной трубке* (3.8) для размещения изделия в глотке.
- 3.3 **наружное уплотнение** (external seal): Уплотнение, расположенное вне пациента.

Пример – Уплотнение между лицевой маской и лицом

- 3.4 **сторона аппарата** (machine end): Концевая часть *супрагортанной трубки* (3.8) или *соединителя супрагортанной трубки* (3.9), предназначенная для подключения к дыхательному контуру.
- 3.5 **сторона пациента** (patient end): Концевая часть *супрагортанной трубки*, предназначенная для введения пациенту.
 - 3.6 **падение давления** (pressure drop): Перепад давления при заданном потоке.
- 3.7 **механизм фиксации** (seating mechanism): Компонент со стороны пациента, который определяет положение *супрагортанной трубки*.
- 3.8 **супрагортаннаяые трубка** (supralaryngeal airway): Изделие вводимое через рот, без прохождения через голосовые связки, предназначенное для обеспечения отдельного дыхательного канала к верхней части гортани.
- 3.9 **соединитель супрагортанной трубки** (supralaryngeal airway connector): Компонент, обеспечивающий интерфейс для присоединения *супрагортанной трубки* (3.8) к источнику газа.

ГОСТ Р ИСО 11712-202_

3.10 **дыхательное отверстие** (ventilatory opening): Отверстие в *супрагортанной трубке* (3.8) вблизи стороны пациента (3.5), предназначенное для прохождения газов и/или таких изделий, как трахеальная трубка, катетер для аспирации или эндоскоп.

Примечание — Супрагортанные трубки могут иметь более одного дыхательного отверстия.

3.11 **дыхательный канал** (**ventilatory pathway**): Часть *супрагортанной трубки* (3.8), через которую должны проходить газы.

4 Общие требования

4.1 Общие положения

Применяют требования пункта 4 ИСО 18190:2016.

В приложении D представлен информационный перечень выявленных опасностей.

4.2 Методы испытаний

Многие положения настоящего стандарта, касающиеся испытаний, устанавливают критерии приемлемости для различных аспектов функциональных характеристик. Эти критерии приемлемости должны соблюдаться всегда. Если изготовитель решит указать в эксплуатационных документах более высокие уровни функциональных характеристик, чем те, которые указаны в настоящем стандарте, то эти уровни, указанные изготовителем, становятся приемлемыми уровнями и также должны соблюдаться.

Соответствие устанавливают рассмотрением инструкции по эксплуатации и технической документацией изготовителя.

5 Материалы

5.1 Общие положения

Применяют подходящие требования пункта 5 ИСО 18190:2016.

5.2 Испытание на биологическую безопасность

Супрагортанные трубки также должны быть оценены и испытаны в соответствии с ИСО 18562-1.

Соответствие устанавливают рассмотрением технической документации изготовителя.

5.3 Руководство по материалам, предназначенным для *супрагортанных трубок* и *соединителей*

В приложении Е приведены рекомендации по материалам и конструкции супрагортанных трубок и соединителей.

6 Требования к конструкции

6.1 Общие положения

Применяют подходящие требования пункта 6 ИСО 18190:2016.

6.2 Положения, используемые для вентиляции

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.2 приложения А.

6.2.1 Супрагортанные трубки должны обеспечивать вентиляцию в тех положениях головы и шеи, а также в тех положениях пациента, для которых предназначено изделие.

Соответствие устанавливают рассмотрением технической документацией изготовителя.

- 6.2.2 Супрагортанные трубки должны обеспечивать вентиляцию, когда пациент находится в положении лежа на спине, а голова и шея находятся в нейтральном положении и имеют угол наклона не менее 30°:
 - а) при изгибания;
 - b) удлинении;
 - с) повороте вправо и влево;
 - d) сгибании в бок (наклоне) вправо и влево.

ГОСТ Р ИСО 11712-202

Соответствие устанавливают рассмотрением технической документацией изготовителя.

- 6.2.3 *Супрагортанные трубки* также должны обеспечивать вентиляцию в следующих положениях и в любом положении, предназначенном для применения:
 - а) положение по Тренделенбургу (голова опущена на 10°);
 - b) в сидячем положении (45°).

Примечание — См. приложения А и D.

Соответствие устанавливают изучением мер по снижению негативных последствий, описанных в оценке риска, и связанных с ними исследований по верификации и валидации в файле менеджмента риска изготовителя.

6.3 Обозначение размера

Примечание 1 – Руководство или обоснование для этого подпункта приведено в А.3.3 приложения А.

Супрагортанные трубки должны быть обозначены по размеру с использованием следующих обозначений:

- а) диапазон размеров может составлять от 0 до 6; наименьшее допустимое увеличение составляет 0,5;
- b) для изделий самого маленького и самого большого размера могут быть указаны размеры от 0 до 6;

Примечание 2 – Переходным размером от детского к взрослому является размер 3.

Соответствие устанавливают осмотром.

6.4 Дыхательные выходы

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.4 приложения А.

Дыхательные отверстия должны быть предусмотрены в супрагортанных трубках на стороне пациента или вблизи нее. Для снижения риска обструкции могут быть предусмотрены дополнительные дыхательные отверстия.

Соответствие устанавливают осмотром.

6.5 Меры предосторожности против спадения стенок *дыхательного канала*

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.5 приложения А.

6.5.1 Должны быть предусмотрены средства, предотвращающие спадение *дыхательного канала* в результате перегиба или сжатия.

Соответствие устанавливают проведением испытания, приведенного в приложении С.

6.5.2 Устойчивость к сжатию должна оцениваться путем изучения мер по снижению негативных последствий, описанных в оценке риска, и соответствующих исследований по верификации и валидации.

Соответствие устанавливают рассмотрением файла менеджмента риска изготовителя.

6.6 Механизмы фиксации

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.6 приложения А и в приложении В.

- 6.6.1 Механизмы фиксации должны быть встроены в супрагортанную трубку.
- Соответствие устанавливают рассмотрением технического файла изготовителя.
- 6.6.2 *Механизм фиксации* должен расположить изделие в дыхательных путях и способствовать его удержанию, обеспечивая поступление дыхательных газов в легкие.

Соответствие устанавливают рассмотрением технического файла изготовителя.

6.6.3 *Механизмы фиксации* не должны закрывать *дыхательное отверстие* или перекрывать *дыхательный канал*.

ГОСТ Р ИСО 11712-202_

Соответствие устанавливают методом, выбранным изготовителем, на основе изучения мер по снижению негативных последствий, описанных в оценке риска, и связанных с ними исследований по верификации и валидации.

6.7 Система накачивания/спускания манжеты

6.7.1 Системы для накачивания манжеты должны иметь в составе трубку для накачивания, контрольный баллон или другое устройство, показывающее, что манжета надута или спущена.

Примечание — Системы для накачивания манжеты могут также использоваться в качестве устройства для индикации давления или ограничения давления.

Соответствие устанавливают осмотром.

6.7.2 Свободный конец трубки для накачивания должен быть либо открыт, либо герметично закрыт с помощью запорного устройства или самозакрывающегося клапана. Если требуется подключение к внешнему устройству для накачивания, входное отверстие трубки для накачивания должно быть совместимо с коническим соединителем Luer, соответствующим ИСО 80369-7.

Соответствие устанавливают осмотром и проведением функционального испытания.

6.7.3 Трубка для накачивания, клапан наддува или любое запорное устройство, выполняющее функцию обратного клапана, не должны препятствовать преднамеренному сдувание *механизма фиксации*.

Соответствие устанавливают проведением функционального испытания.

6.8 Внутренний объем

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.7 приложения А.

Внутренний объем *дыхательного канала* должен быть измерен и указан в инструкции по эксплуатации [см. 9.4 с)].

Соответствие устанавливают рассмотрением инструкции по эксплуатации и проведением испытания следующим методом:

Закрывают один конец дыхательного канала. Измеряют объем воды в миллилитрах, необходимый для заполнения дыхательного канала от дыхательного отверстия до 15-миллиметрового соединителя на стороне аппарата изделия.

6.9 Максимальный размер изделия

Максимальный размер изделий, которые могут легко проходить через дыхательный канал, должен быть указан изготовителем в инструкции по эксплуатации [см. 9.4 е)]. Изделия могут включать в себя (но не ограничиваться ими) трахеальные трубки, катетеры для аспирации, оптоволоконные эндоскопы, бужи и т. д.

Соответствие устанавливают проведением функционального испытания и рассмотрением с инструкции по эксплуатации.

Примечание — Для облегчения прохождения изделие можно смочить водой или смазать водорастворимой смазкой.

6.10 Соединители супрагортанных трубок

6.10.1 Соединители супрагортанных трубок со стороны аппарата должны иметь форму конуса диаметром 15 мм, соответствующего ИСО 5356-1. Любой переход во внутреннем пространстве соединителя должен обеспечивать достаточный проход для беспрепятственного перемещения и извлечения изделия (см. 6.9).

Соответствие устанавливают осмотром и рассмотрением технической документацией изготовителя.

6.10.2 Отверстие со *стороны пациента* должно находиться в плоскости, расположенной под углом $(90 \pm 5)^\circ$ к продольной оси соединителя со *стороны пациента*.

Соответствие устанавливают осмотром.

6.11 Очистка, дезинфекция и стерилизация

Супрагортанные трубки и соединители, не предназначенные для однократного применения, должны быть сконструированы таким образом, чтобы можно было проводить их очистку, дезинфекцию или стерилизацию методами, описанными в эксплуатационных документах [см. 9.4 r)].

ГОСТ Р ИСО 11712-202

Примечание — См. приложение Е.

Соответствие устанавливают рассмотрением технической документацией изготовителя.

7 Требования к *супрагортанным трубкам* и *соединителям*, поставляемым стерильными

Применяют подходящие требования пункта 7 ИСО 18190:2016.

8 Упаковка

Применяют подходящие требования пункта 8 ИСО 18190:2016.

9 Информация, предоставляемая изготовителем

9.1 Общие положения

Применяют подходящие требования пункта 9 ИСО 18190:2016.

9.2 Маркировка супрагортанной трубки

- 9.2.1 Материалы для маркировки должны:
- а) быть нетоксичным и совместимым с тканями;
- b) оставаться различимыми в течение ожидаемого срока службы супрагортанной трубки.

Соответствие устанавливают, подвергнув соответствующие участки маркировки *супрагортанных трубок* воздействию перечисленных применимых веществ в течение суммарного периода времени, эквивалентного ожидаемой продолжительности воздействия при эксплуатации:

- Лекарственные средства или химические вещества, которые при эксплуатации могут контактировать с *супрагортанными трубками* и указаны в инструкции по эксплуатации (IFU);
 - Если применимо, искусственная слюна;
 - Если применимо, искусственная слизь;
 - Если применимо, искусственное масло для кожи;

- Если применимо, любые другие вещества, выявленные в процессе менеджмента риска.

Верифицируют, что маркировка остается различимой для человека с остротой зрения 1, при необходимости скорректированной, на расстоянии 1 м \pm 10 мм при освещенности (215 \pm 5) лк, после протирания маркировки вручную, без излишнего нажима, в течение 15 с тканью, смоченной дистиллированной водой

- 9.2.2 В дополнение к требованиям к маркировке, указанным в 9.1, супрагортанная трубка должна быть промаркирована следующим образом:
- а) обозначенный размер в соответствии с 6.3; изделия, которые охватывают диапазон размеров, должны быть промаркированы соответствующим диапазоном; и
- b) маркировка диапазона нормальной глубины введения или индикаторы, видимые вокруг ствола *супрагортманной трубки*, соответствующие резцам или деснам пациента, чтобы показать типичный диапазон предполагаемой глубины введения;

Примечание 1 – Маркировка диапазона глубины введения не обязательно должна быть нанесена непрерывно вокруг ствола трубки.

Примечание 2 – Руководство или обоснование для этого подпункта приведено в А.3.8 приложения А.

с) отметки глубины, если они предусмотрены, в сантиметрах, измеренные от дыхательного отверстия на стороне пациента.

Соответствие устанавливают осмотром.

9.3 Маркировка на индивидуальной упаковке супрагортанных трубок

В дополнение к требованиям, изложенным в 9.1, на индивидуальную упаковку также должна быть нанесена маркировка, соответствующая требованиям, указанным в 9.2.2 а)

Примечание — Это требование не применяется, если указанная информация четко видна через упаковку.

Соответствие устанавливают осмотром.

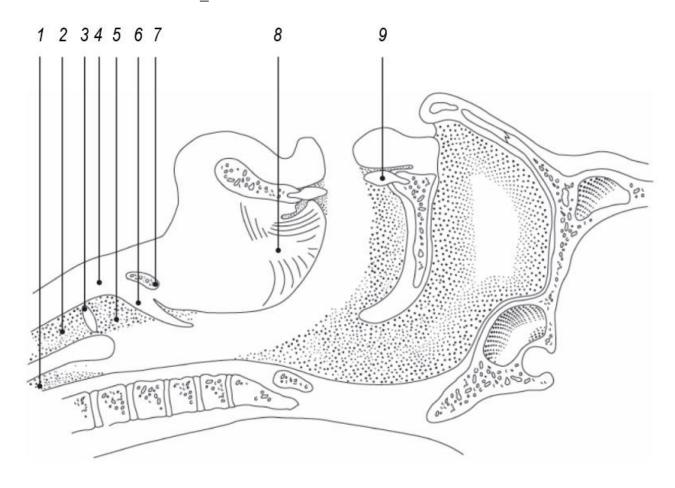
ГОСТ Р ИСО 11712-202

9.4 Инструкция по эксплуатации

В дополнение к требованиям, указанным в 9.1, изготовители должны указывать в инструкциях по эксплуатации следующую информацию:

- а) рекомендуемые методы введения и стабилизации супрагортанной трубки;
- b) инструкции по эксплуатации с другими изделиями, такими как трахеальные трубки или бронхоскопы, там, где это указано;
 - с) внутренний объем в миллилитрах, как указано в 6.8;
- d) *падение давления* в сантиметрах H₂O при заданном испытательном потоке, как указано в приложении C;
 - е) максимальный размер изделия, как указано в 6.9;
- f) предназначено ли изделие для однократного применения или его можно использовать повторно;
- g) инструкции по действиям в случае повреждения упаковки для супрагортанных трубок, поставляемых стерильными;
 - h) минимальный межзубный зазор в миллиметрах, необходимый для введения;
- і) схему *супрагортанной трубки* с указанием основных компонентов, включая номинальную длину внутреннего(их) дыхательного(их) пути(путей), в сантиметрах от *стороны аппарата* соединителя до *дыхательного отверстия* и любых других рабочих каналов в изделии;
- ј) схему, показывающую предполагаемое положение и основные характеристики устройства *супрагортанной трубки* с соответствующими анатомическими ориентирами, перечисленными на рисунке 1; другие ориентиры должны быть включены, если они определены как меры по снижению негативных последствий в оценке риска и связанных с ними исследованиях по верификации и валидации;

Примечание — Руководство или обоснование для этого подпункта приведено в А.3.9 приложения А.


- k) предупреждение, если *супрагортанная трубка* не защищает трахею или легкие от риска аспирации;
- I) предупреждение о том, что проходимость *супрагортанной трубки* должна быть подтверждена после любого изменения положения головы или шеи пациента;
- m) предупреждение о том, что *супрагортанные трубки* содержат натуральный каучуковый латекс, если это применимо;

- n) предупреждение о том, что объем или давление *манжеты* могут изменяться в присутствии закиси азота, кислорода или других медицинских газов, если это применимо;
- о) предупреждение о том, что *супрагортанные трубки* могут быть легковоспламеняющимися в присутствии лазеров и оборудования для электрокоагуляции;
- р) меры предосторожности, необходимые для утилизации биологически опасных материалов;
- q) изготовители должны сообщать о любых особых условиях транспортирования, хранения и эксплуатации;
- r) рекомендуемые методы очистки и дезинфекции или стерилизации, а также максимальное количество повторных использований, если *супрагортанные трубки* могут использоваться повторно.

Соответствие устанавливают рассмотрением инструкции по эксплуатации.

Рисунок 1 предназначен для обозначения предполагаемого положения *супрагортанной трубки* относительно анатомических ориентиров.

ГОСТ Р ИСО 11712-202_

1 – пищевод; 2 – трахея; 3 – голосовые связки/складки; 4 – щитовидный хрящ; 5 – вход в гортань; 6 – надгортанник; 7 – подъязычная кость; 8 – язык; 9 – резцы

Рисунок 1 – Схема анатомических ориентиров дыхательных путей

Приложение A (справочное)

Обоснования

А.1 Общие положения

В настоящем приложении приведено краткое обоснование основных требований настоящего стандарта, предназначенное для тех, кто знаком с объектом стандарта, но не принимал участия в его разработке. Считается, что понимание причин основных требований важно для корректного применения стандарта. Кроме того, поскольку клиническая практика и технологии изменяются, считается, что обоснование существующих требований облегчит любой пересмотр стандарта, связанный с этими изменениями.

Ниже приведены пояснения к определенным пунктам и подпунктам настоящего стандарта, номера которых совпадают с приведенными в самом стандарте. Поэтому нумерация не является последовательной.

А.2 Введение

А.2.1 Общий обзор

Супрагортанные трубки представляют собой класс медицинских предназначенных для облегчения самопроизвольной, вспомогательной или контролируемой вентиляции легких. Супрагортанные трубки отличаются от других воздуховодных изделий, таких как орофарингеальные воздуховоды и трахеальные трубки, тем, что они не требуют лицевого уплотнения или трахеального введения для вентиляции. Поскольку уже существует несколько изделий, отвечающих критериям, предъявляемым к супрагортанным трубкам, и поскольку эти изделия значительно отличаются по своей принципиальной и функциональной конструкции, в настоящем стандарте определены основные требования к конструкции супрагортанных трубок. Таким образом, настоящий стандарт представляет собой общую основу для классификации доступных в настоящее время воздуховодных изделий и обеспечивает полезную платформу для конструирования и разработки будущих супрагортанных трубок, не ограничивая конструкцию и не препятствуя разработке.

Изделия, на которые распространяется настоящий стандарт:

- обеспечивают самопроизвольную вентиляцию легких;
- способны поддерживать проходимость воздуховода, когда соединитель воздуховода открыт для окружающей среды;
- облегчают вентиляцию с положительным давлением, сводя к минимуму утечку дыхательных газов в окружающую атмосферу;
 - снабжены соединителем супрагортанной трубки на конце аппарата изделия для

ГОСТ Р ИСО 11712-202

обеспечения подключения к дыхательному контуру;

- не требуют внешнего уплотнения;
- не требуют размещения хирургическим путем;
- не предназначены для проникновения в трахею.

Существует по меньшей мере пять следующих различных классификаций конструкций супрагортанных трубок.

- а) Орофарингеальные воздуховоды с манжетами, где *дыхательное отверстие* расположено у основания языка, а уплотнительная поверхность расположена в ротоглотке.
- b) Ларингеальные маски, в которых *дыхательное отверстие* окружено *манжетой*, которая образует уплотнение с тканями надгортанника. *Дыхательное отверстие* и *манжета* обычно представляют собой наиболее удаленные часть изделия.
- с) Фарингеальные или глоточно-пищеводные трубки, где манжета окружает дыхательную трубку и расположена ближе к дыхательному отверстию. Такая конструкция позволяет разделить глотку на области, при этом манжета служит плотной перегородкой между проксимальной и дистальной областями глотки, а дыхательное(ые) отверстие(я) расположено(ы) в дистальной области глотки. Примером такого типа воздуховода является ларингеальная трубка.
- d) Фарингеальные воздуховоды с оболочкой, которые представлены обтекаемыми фарингеальными воздуховодами с обтекаемой оболочкой (streamlined liner pharyngeal airway, SLIPA). Это изделие с оболочкой, которое при введении расширяет мягкие ткани шеи. Натяжение эластичных мягких тканей шеи, окружающих изделие, обеспечивает механизм фиксации. Дыхательное отверстие расположено в пределах оболочки в области надгортанника.
- е) Изделия с мягкой, гелеобразной, ненадуваемой *манжетой* и расширяющим, вогнутым в полость рта стабилизатором. *Механизм фиксации* создается за счет мягкой ненадуваемой *манжеты*, точно повторяющей анатомию гортани и обеспечивающей идеальную размещение без необходимости надувания *манжеты*.

А.2.2 Изделия, не входящие в область применения супрагортанных трубок

Хотя было возможно включить некоторые варианты конструкции назальных *супрагортманных трубок*, некоторые из них были исключены из области применения настоящего стандарта, поскольку не было известно о наличии доступных на рынке изделий, а введение через нос изначально считалось сопряженным с повышенным риском для пациента.

А.2.3 Идентификация опасностей для оценки риска

Список известных опасностей и рисков, связанных с использованием *супрагортанных трубок*, был составлен на основе отчетов о неблагоприятных происшествиях и известных

инцидентах, описанных в клинической литературе. В ходе разработки настоящего стандарта рабочая группа выявила следующие потенциальные риски для пациентов:

- механическая травма тканей, окружающих *манжету*, нейроваскулярная травма или ишемия тканей;
 - недостаточная вентиляция легких/гипоксия;
 - риск регургитации и аспирации;
 - токсичность;
 - повреждение зубов;
 - кровотечение;
 - перекрестное загрязнение.

Другие риски более подробно описаны в приложении D. Изготовители могут выявлять дополнительные риски для пациента при разработке конкретных *супрагортанных трубок*.

Многие из этих рисков связаны с неправильным определением размеров и расположения доступных на рынке изделий, эти вопросы настоящий стандарт пытается прояснить. Например, взаимосвязи между механизмом фиксации и размерами ротоглотки, материалами и толщиной стенки изделия являются одними из факторов, которые влияют на давление в манжете, необходимое для обеспечения супрагортанного уплотнения, когда изделие находится в нужном положении. Чрезмерное давление на стенки тканей орофарингеальной области может затруднить капиллярный кровоток или повредить нервы.

Аналогичным образом, в некоторых конструкциях *супрагортманных трубок* также может возникать закупорка *дыхательного отверстия* из-за близости изделия к надгортаннику. Чтобы решить эту проблему безопасности, в настоящем стандарте определены требования к средствам предотвращения закупорки *дыхательного отверстия* мягкими тканями, если *супрагортманная трубка* не устанавливается у основания языка в своем предусмотренном положении.

ПРЕДУПРЕЖДЕНИЕ — Анатомические различия, условия эксплуатации, размер манжеты для супрагортанных трубок или другие факторы могут привести к выбору либо слишком большого, либо слишком маленького размера супрагортанной трубки для конкретного пациента. Таким образом, сохраняется необходимость в экспертном клиническом заключении при выборе размера супрагортанных трубок.

А.3 Требования к конструкции

А.3.1 Общие положения

Требования, изложенные в пункте 6 настоящего стандарта, были основаны на снижении негативных последствий выявленных рисков, указанных в приложении D.

А.3.2 Положения, используемые для вентиляции (6.2)

Положения головы и шеи, а также положения пациента, необходимые для испытания, являются типичными для клинической практики. Другие потенциально применимые

ГОСТ Р ИСО 11712-202

положения, такие как положение лежа на боку и лежа на животе, были исключены из-за дополнительной сложности и риска для пациента, связанных с этими требованиями.

А.3.3 Обозначение размера (6.3)

В настоящее время имеется мало информации о зависимости массы пациента, его роста или задним межслойным размером щитовидного хряща и выбором размера. Кроме того, существуют значительные анатомические различия между пациентами и существенные различия в конструкции доступных в настоящее время супрагортанных трубок. Решения о выборе оптимального размера должны приниматься изготовителями конкретных изделий. Изготовителями рекомендуется использовать единую номенклатуру для обозначения размеров, определять оптимальное расположение изделия по отношению к структуре дыхательных путей и наносить четкую маркировку рядом со стороной аппарата изделия, которая будет указывать оператору, находится ли изделие в предназначенном для него положении. Данная информация, наряду с клинической информацией, полученной от каждого пациента, позволит оператору принимать решения относительно выбора оптимального размера для каждого отдельного пациента.

А.3.4 Дыхательные отверстия (6.4)

Было проведено много обсуждений по поводу определений дыхательного отверстия, многие из которых считаются ограничивающими конструкцию. Было согласовано, что *дыхательное отверстие* обычно располагается в области основания языка.

А.3.5 Меры предосторожности против спадения стенок дыхательных каналов (6.5)

Изготовитель может использовать различные методы для валидации конструкции *супрагортманных трубок*. Эти методы могут включать (но не ограничиваться ими) инженерный анализ, стендовые испытания, испытания на животных, испытания на трупах или результаты клинических исследований с участием людей.

В отличие от трахеальных трубок, которые могут быть испытаны с помощью функциональных тестеров и симуляторов пациента, некоторые конструкции *супрагортанных трубок* могут быть валидированы только *in vivo* на людях. Большое разнообразие дыхательных путей человека создает проблемы с безопасностью конструкции этих изделий.

Супрагортанные трубки могут использоваться не только в положении лежа на спине. Положение по Тренделенбургу, обратное положение по Тренделенбургу и положение лежа на животе также должны быть испытаны, если предполагается использование изделия в данных положениях.

Устойчивость к образованию перегибов – это физическое свойство, которое может быть измерено с помощью предложенного метода испытания проходимости дыхательных путей. Задачей испытательного калибра является изгиб *супрагортанных трубок* до реалистичного минимального радиуса и дуги, соответствующих форме, которую они могут принять в максимально согнутом положении на продолжительный период времени во время эксплуатации. Радиус калибра и размеры дуги частично получены из данных, опубликованных

в ИСО 11135, и в [8], где расстояние от свода твердого неба до свободного конца надгортанника было измерено на МРТ-снимках пятидесяти взрослых пациентов при нейтральном положении головы.

Падение давления дает информацию о степени закупорки, вызванной перегибом. Конструкция тестового аппарата основана на измерениях длины стандартных орофарингеальных воздуховодов и клинически доступных супрагортанных трубок.

А.3.6 Механизмы фиксации (6.6)

Механизмы фиксации не должны закрывать дыхательное отверстие. Единый метод испытания не может быть применим ко всем супрагортанным трубкам из-за большого разнообразия конструкций. Стандартный метод определения грыжи манжеты трахеальной трубки, описанный в приложении С ИСО 5361, может служить полезным руководством для разработки метода(ов) испытания супрагортанных трубок. Комитет также признал, что другие механизмы могут способствовать перекрытию дыхательного отверстия. К ним могут относиться, в частности, складывание внутрь, перегибание или загибание назад, вызванные наклоном или поворотом во время введения или манипуляций (см. рисунки А.1, А.2 и А.3).

Рисунок А.1 – Пример складывание внутрь

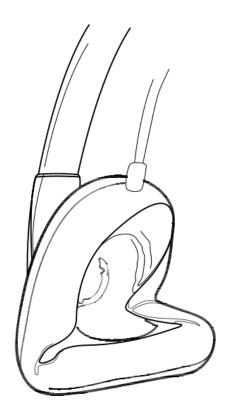


Рисунок А.2 – Пример перегибания

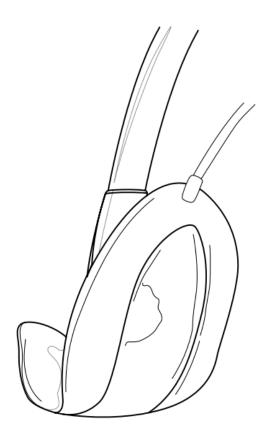


Рисунок А.3 – Пример загибание назад

А.3.7 Внутренний объем (6.8)

Различные супрагортанные трубки имеют различную конструкцию на стороне пациента. Соответственно, изготовители обязаны оценить интерфейс дыхательных отверстий на стороне пациента супрагортанных трубок, учитывая анатомию гортани/глотки и определить соответствующую конечную точку дыхательного канала с целью определения внутреннего объема. Например, для классического воздуховода ларингеальной маски (LMA) конечная точка дыхательного канала может быть определена как точка, в которой расположены ограничивающие полоски.

А.3.8 Маркировка диапазона нормальной глубины введения (9.2.2 b)

Несмотря на отсутствие единого мнения об оптимальном стиле и расположении маркировки глубины введения, а также о том, должны ли они отличаться в зависимости от размера трубки, маркировка трубки на *стороне аппарата* должна указывать оператору расположение *супрагортанных трубок*.

Маркировка диапазона нормальной глубины введения должна быть на *стороне* аппарата дыхательной трубки. Могут быть две маркировки, указывающие типичную минимальную и максимальную рекомендуемую глубину введения. Маркировка на *стороне* аппарата будет указывать максимальную глубину введения, а маркировка на *стороне* пациента — минимальную глубину введения. Расстояние между маркировкой на *стороне* аппарата и маркировкой на *стороне* пациента представляет собой диапазон нормальной глубины введения по отношению к резцам/альвеолярному отростку и учитывает анатомические различия между пациентами. Диапазон нормальной глубины введения обеспечит врачей полезной информацией и позволит им использовать эту информацию в клинической практике.

Рассматривались и другие методы маркировки, а именно отметки глубины на стволе воздуховода, но их использование не потребовалось из-за широкого спектра изделий и разнообразия анатомических особенностей пациентов.

Маркировка диапазона нормальной глубины введения не обязательно наносится непрерывно вокруг ствола трубки, если она видна оператору.

А.3.9 Анатомические ориентиры (9.4 ј)

Известно, что минимального набора анатомических ориентиров, показанных на рисунке 1, может быть недостаточно для описания оптимального расположения некоторых конструкций *супрагортанных трубок*. Определение дополнительных ориентиров, таких как черпаловидный хрящ, нервы и мышцы (показанные на рисунке D.1), может потребоваться, если оценка риска выявит риск неправильного позиционирования, который может привести к травме.

Приложение В (справочное)

Оценка и документирование клинической эффективности у людей

В.1 Общие положения

В настоящем приложении приведены руководства по оценке и документированию клинической эффективности *супрагортманных трубок* при исследованиях с участием людей. Методы, описанные в настоящем приложении, применимы ко всем альтернативным вариантам конструкции *супрагортманных трубок*, когда требуется проводить исследования с участием людей. Оно не предназначено для определения медицинской практики, надлежащих процедур безопасности или процессов Институционального наблюдательного совета (IRB) или Комитета по этике (EC).

Примечание — Настоящее руководство применимо, когда в соответствии с 6.6 требуются клинические исследования.

В.2 Методы, исследования с участием пациентов

В.2.1 В клинических условиях основной задачей является уход за пациентами.

В.2.2 Исследуемая популяция

а) Число и источник обследуемых

В исследовании должно участвовать достаточное число обследуемых, чтобы достичь статистической значимости, необходимой для демонстрации соответствующей вентиляции с положительным давлением или спонтанного дыхания в диапазоне размеров пациентов, для которых предусмотрено применение изделия.

b) Характеристики исследуемой популяции

Для каждого испытываемого размера изделия, обследуемые должны максимально отличаться по своим физическим характеристикам.

В.2.3 Критерии включения/исключения обследуемых

Критерии включения/исключения должны быть определены в протоколе исследования.

В.2.4 Критерии прекращения исследования

В протоколе исследования должны быть указаны обстоятельства и/или реакция обследуемого на процедуру, которые становятся основанием для прекращения исследования.

Пример – Установлено, что обследуемый соответствует одному из предварительно определенных критериев исключения.

В.2.5 Характеристики протокола исследования

Изделие должно продолжать работать согласно своему предусмотренному применению при разгибании шеи, сгибании шеи, повороте головы и различных положениях тела пациента (по Тренделенбургу, сидя, лежа на боку).

В.2.6 Устойчивость к обструкции дыхательных каналов супрагортанных трубок

Это может быть продемонстрировано одним или несколькими из следующих способов:

- а) положительное давление на вдохе, необходимое для создания достаточного дыхательного объема;
- b) измерение изменений концентраций углекислого газа в конце выдоха, SpO₂, концентраций газов в крови во время эксплуатации;
- с) выявление ненормальных капнографических волн, указывающих на обструкцию дыхательных путей;
 - d) измерение показателей давления в пищеводе у спонтанно дышащих пациентов;
- е) определение отклика дыхательных путей на присутствие воздуховода во время анестезии (например, кашель, двигательная реакция);
- f) указание типа, продолжительности и частоты вмешательств и манипуляций с воздуховодом (например, подъем челюсти, подъем подбородка, поворот головы), необходимых для поддержания дыхательных путей пациента;
- g) отметка о простоте эксплуатации, физиологической переносимости и осложнениях (например, аспирация, регургитация, ларингоспазм, гипоксия).

Приложение С (обязательное)

Методы испытаний для определения устойчивости к перегибам

С.1 Принцип

Устойчивость к перегибам *супрагортанных трубок* необходимо измерять как *падение* давления при заданной скорости потока при изгибе воздуховода до предварительно заданного минимального радиуса. Испытательная скорость потока и минимальный радиус изгиба должны варьироваться в соответствии с обозначением размера *супрагортанных трубок*.

С.2 Оборудование

С.2.1 Оборудование с минимальным радиусом изгиба

Выбирают калибр с минимальным радиусом, показанный на рисунке С.1, в соответствии с маркировкой размера *супрагортанной трубки*, как указано в таблице С.1.

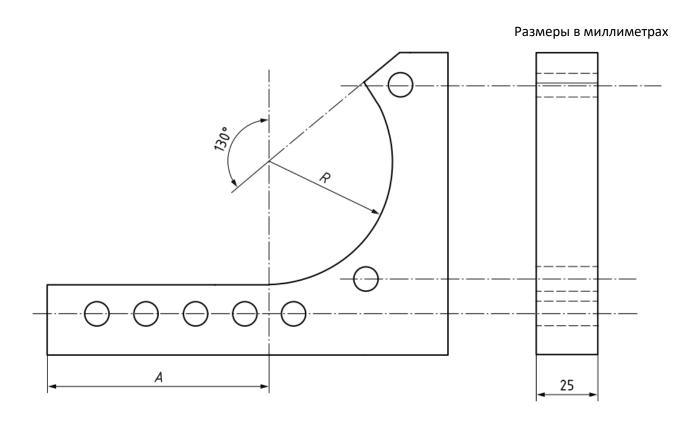


Рисунок С.1 – Калибр с минимальным радиусом изгиба

Таблица С.1 – Размеры калибра с минимальным радиусом изгиба

SLA	Минимум	Прямой участок	
Диапазон размеров	Радиус R, мм	Длина А, мм	
≥ 3	50	≅ 90	
≥ 2½ + < 3	40	≅ 80	
≥1 ½ + < 2,5	30	≅ 70	
≥ 0	25	≅ 50	

С.2.2 Оборудование для измерения падения давления

Собирают оборудование, как показано на рисунке С.4, состоящее из источника воздуха, газового клапана, расходомера газа, дифференциального газового манометра и конического соединителя размером 15 мм, соединяют последовательно. Одно из отверстий дифференциального газового манометра должно быть открыто для атмосферного давления. Для целей регистрации рекомендуется использовать электронные измерительные приборы.

С.3 Процедура

С.3.1 Общие положения

- С.3.1.1 Фиксируют и удерживают *супрагортанную трубку* в оборудовании с минимальным радиусом изгиба.
- С.3.1.2 Если предусмотрено, накачивают *механизм фиксации* до рекомендуемого объема.
- С.3.1.3 Прикладывают *сторону пациента* изделия к плоской поверхности калибра в таком положении, чтобы стрелка на калибре совпадала с рекомендуемой глубиной введения относительно верхушки надгортанника.
- С.3.1.4 Удерживают *сторону пациента* изделия в этом положении, прижимают *сторону пациента* изделия к калибру с помощью нейлоновых кабельных стяжек или эквивалентных изделий.
- С.3.1.5 Сгибают дыхательную трубку по изогнутой поверхности калибра и закрепляют ее на калибре в конце изгиба. Конечная сборка представлена на рисунках С.2 и С.3, в качестве примеров приведены различные конструкции *супрагортанных трубок*.

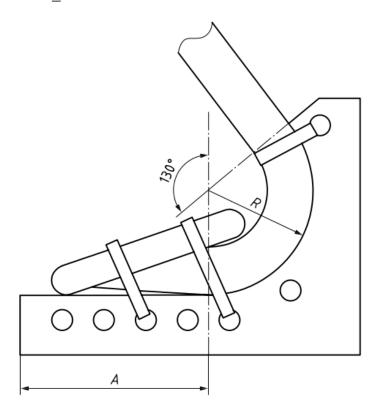


Рисунок C.2 – Пример прикрепления *супрагортанной трубки* типа ларингеальная маска к калибру

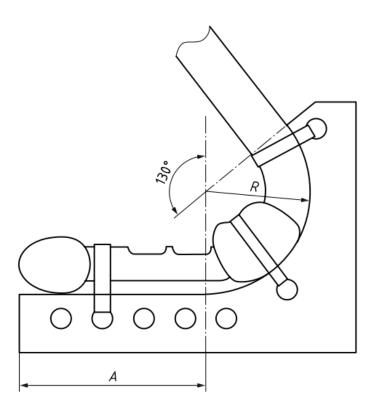
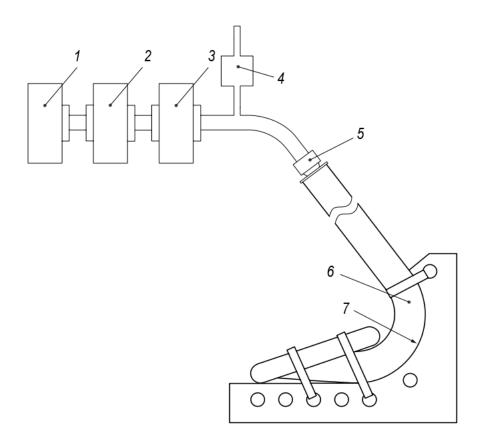



Рисунок С.3 – Пример прикрепления *супрагортанной трубки* типа ларингеальная трубка к калибру

С.3.1.6 Помещаю калибр с *супрагортанной трубкой* в климатическую камеру с температурой (40 ± 1) °C и относительной влажностью > 90 % не менее чем на 4 ч.

С.3.2 Измерение падения давления

- С.3.2.1 Извлекают калибр с изделием из климатической камеры и измеряют *падение* давления в супрагортанной трубке, не снимая ее с калибра.
- С.3.2.2 Используя оборудование, описанное в С.2.2, подсоединяют супрагортанный соединитель к соединителю оборудования и пропускают воздух с испытательным потоком, указанным в таблице С.2, через изделие.

1 – источник воздуха; 2 – клапан управления потоком; 3 – расходомер; 4 – манометр;
 5 – конический соединитель размером 15 мм; 6 – супрагортанная трубка; 7 – оборудование с минимальный радиусом изгиба

Примечание — Для наглядности изображена *супрагортанная трубка* типа ларингеальной маски.

Рисунок С.4 – Пример оборудования для измерения падения давления

ГОСТ Р ИСО 11712-202

Таблица С.2 – Испытательная скорость потока

Идеальная масса тела согласно	Испытательный поток, л/мин
предусмотренному применению	
< 10 кг	15
10 кг – 30 кг	30
> 30 KF	60

- С.3.2.3 Определяют *падение давления* при потоке, указанном в таблице С.2, в течение 5 с после начала подачи потока через *супрагортанную трубку*. Температура газа должна составлять (23 ± 2) °C.
- С.3.2.4 Отсоединяют и удаляют *супрагортанную трубку* и определите *падение* давления при том же потоке. Вычитают это значение из значения, полученного в С.3.2.3. Получают *падение* давления, присущее *супрагортанной трубке*.
- С.3.2.5 Повторяют соответствующие шаги С.3.2.1–С.3.2.4, прикрепив *супрагортанную трубку* к оборудованию, показанному на рисунке С.5, вместо оборудования с минимальным радиусом изгиба.
- С.3.2.6 Если предусмотрены *вспомогательные дыхательные отверстия*, повторяют шаги С.3.2.1–С.3.2.4 для каждого отверстия после предварительной подготовки *супрагортанной трубки* при использовании испытательного оборудования, указанного в С.3.1.

С.4 Представление результатов

- С.4.1 Выражают номинальное максимальное *падение давления*, измеренное через дыхательное отверстие и, если таковое имеется, через вспомогательное дыхательное отверстие при закрытом основном дыхательном отверстии, в сантиметрах H_2O .
- С.4.2 Убеждаются, что *падение давления* не превышает значения, указанного изготовителем в сопроводительной литературе.

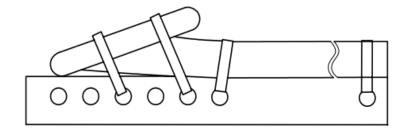
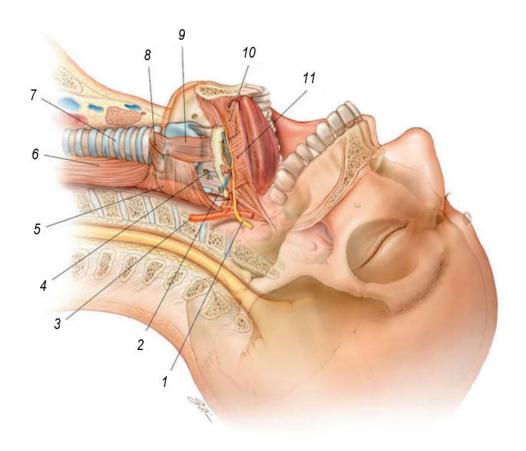



Рисунок С.5 – Пример прикрепления *супрагортанной трубки* типа ларингеальная маска к калибру для разгибания шеи

Приложение D (справочное)

Идентификация опасностей для менеджмента риска

Примечание — Этот список не является исчерпывающим для всех изделий, описанных в настоящем стандарте, но он представляет собой руководство по оценке риска. Не все опасности применимы к каждому типу супрагортанных трубок.

1 – подъязычный нерв; 2 – язычная вена и артерия; 3 – наружная сонная артерия;
 4 – верхний гортанный нерв, вена, артерия; 5 – нижний констриктор глотки;
 6 – пищевод; 7 – трахея; 8 – перстневидная мембрана; 9 – щитоподъязычная мышца; 10 – подбородочно-язычная мышца; 11 – подъязычно-язычная мышца

Рисунок D.1 – Типичная анатомия дыхательных путей пациента

D.1 Потенциальные опасности, связанные с использованием *супрагортанных трубок*

а) Травма (механическая или нейроваскулярная травма, связанная с введением или

ГОСТ Р ИСО 11712-202_

удалением супрагортанных трубок) окружающих тканей, вызывающая:

- 1) болезненность, небольшие ссадины;
- 2) гематому;
- 3) защемление или воспаление надгортанника;
- 4) опухание и воспаление околоушной или слюнной желез;
- 5) смещение черпаловидного хряща;
- 6) повреждение верхнего пищеводного сфинктера;
- 7) повреждение тканей, отек;
- 8) сильная или продолжительная боль в горле;
- 9) невропатия;
- 10) повреждение спинного мозга;
- 11) паралич;
- 12) повреждение голосовых связок;
- 13) повреждение зубов;
- 14) кровотечение;
- 15) инфекция;
- 16) смещение черпаловидного хряща.
- b) Недостаточная вентиляция легких (гипоксия, гиперкапния) из-за:
- 1) утечки дыхательных газов;
- 2) невозможности удаления изделия;
- 3) обструкции, вызванной горизонтальной силой (крутящим моментом);
- 4) бронхоспазма, ларингоспазма, стридора, икоты, кашля, задержки дыхания;
- 5) отека легких отрицательное давление;
- 6) повторного дыхания;
- 7) недостаточной спонтанная вентиляция легких;
- 8) обструкции;
- 9) повышенного внутригрудного давления.
- с) Аспирация или регургитация из-за:
- 1) недостаточной изоляции;
- 2) желудочной инсуффляции;
- 3) невозможности эвакуации содержимого желудка;
- 4) обструкции дыхательных путей (опухание);
- 5) обструкции дыхательных путей (инородные вещества).
- d) Токсичность:
- 1) аллергия;
- і) латекс.
- е) Загрязнение:
- 1) утечка дыхательного газа.

D.2 Потенциальная опасность изделия

- а) Неисправность или потеря уплотнения, вызванные:
- 1) неправильной установкой;
- 2) неправильным положением головы;
- 3) сменой положения пациента;
- 4) снижением давления в уплотнении;
- 5) неправильным размером;
- 6) наличием жидкости в дыхательном выходе;
- 7) повреждением материала соединителя;
- 8) неисправностью при повторном применении (превышение числа циклов повторного применения);
 - 9) износом манжеты;
 - 10) неисправностью клапана наддува;
 - 11) дырой, надрывом, разрывом в стволе трубки воздуховода или уплотнении.
 - b) Потеря проходимости, вызванная:
 - 1) неправильным положением головы;
 - 2) инородными веществами или жидкостями в просвете;
 - 3) уплотнением из-за раздувания;
 - 4) перегибом;
 - 5) резким повышением;
 - 6) разрушением ствола воздуховода.
 - с) Чрезмерное надувание уплотнения вызвано:
 - 1) несоответствием инструкций по эксплуатации;
 - 2) проникновением закиси азота;
 - 3) неправильным расположением воздуховода;
 - 4) неисправностью трубки для накачивания или клапана.
 - d) Недостаточная накачка уплотнения, вызванная:
 - 1) слишком низким расположением по отношению к входу в гортань;
 - 2) необнаруженной утечкой;
 - 3) утечкой газов в окружающую среду;
 - 4) перекручиванием или загибом поверхности уплотнителя;
 - 5) неисправностью трубки для накачивания или клапана;
 - 6) чрезмерным сопротивлением;
 - 7) увеличенным внутренним объемом.
 - е) Неправильный выбор размера для конкретного пациента, вызванный:
 - 1) недостаточным информированием оператора о пациенте/требованиях к размеру;
 - 2) несоответствующей упаковкой.

ГОСТ Р ИСО 11712-202_

D.3 Меры по снижению негативных последствий

- а) Конструкция
- b) Инструкция по эксплуатации
- с) Маркировка
- d) Проверки перед эксплуатацией
- е) Обучение/переподготовка кадров
- f) Испытания на совместимость
- g) Предоставление информации
- h) Оценка риска

Приложение E (справочное)

Руководство по материалам и конструкции

Е.1 Материалы для супрагортанных трубок

Е.1.1 Материалы, используемые для изготовления *супрагортанных трубок*, должны обладать достаточной жесткостью, чтобы можно было изготовить трубку с как можно более тонкими стенками, которая в то же время сохраняла бы устойчивость к сминанию и перегибу, например, под действием веса дыхательного контура.

При установке они должны быть достаточно гибкими и мягкими, чтобы соответствовать анатомическим особенностям пациента, не оказывая чрезмерного давления на ткани тела.

- Е.1.2 Маркировка супрагортанных трубок должна быть стойкой и различимой.
- Е.1.3 Супрагортанные трубки и соединители и материалы для маркировки, используемые на супрагортанных трубках, должны быть достаточно устойчивы к износу при использовании методов очистки, дезинфекции и стерилизации, рекомендованных изготовителем, за исключением случаев, когда они предназначены и маркированы для однократного применения. Такие трубки должны выдерживать применимые методы стерилизации паром.

Рекомендуемый метод или методы стерилизации не должны приводить к изменениям в материалах, которые могут нарушить биологическую безопасность *супрагортанных трубок* и *соединителя* (см. 5.2).

- Е.1.4 Супрагортанные трубки и соединители и материалы для маркировки, используемые на супрагортанных трубках при нормальных условиях эксплуатации, должны быть достаточно устойчивы к повреждению в результате воздействия концентраций анестезирующих паров и газов, используемых в клинических условиях.
- Е.1.5 *Супрагортанные трубки* должны быть четко различимы на рентгене либо посредством природы материала, из которого они изготовлены, либо из-за наличия маркера.
- Е.1.6 *Супрагортанные трубки* должны сохранять свою предусмотренную форму при хранении в оригинальной упаковке в соответствии с инструкциями изготовителя.
- Е.1.7 Воспламеняемость *супрагортанных трубок*, например, при использовании некоторых легковоспламеняющихся анестетиков, электрохирургических аппаратов или лазеров, является общеизвестной опасностью. *Супрагортанные трубки*, которые должны быть устойчивы к воздействию лазера, должны соответствовать требованиям к материалам, испытаниям, маркировке и сопроводительной информации ИСО 11990 и ИСО 14408.

ГОСТ Р ИСО 11712-202

Е.2 Соединители

- E.2.1 Соединители для *супрагортанных трубок* должны быть легкими, но достаточно прочными, чтобы противостоять деформации при нормальных условиях эксплуатации.
- Е.2.2 Соединители для *супрагортанных трубок* должны быть сконструированы таким образом, чтобы иметь минимальный внутренний объем и оказывать минимальное сопротивление потоку газа. Просвет соединителя должен быть гладким и без выступающих частей.
- Е.2.3 Соединители для *супрагортанных трубок* могут быть снабжены скобами, фасками или другими средствами, облегчающими присоединение и отсоединение, при условии, что на любых выступах нет острых кромок.
- E.2.4 В конструкцию может быть встроено удерживающее или защелкивающееся устройство для обеспечения дополнительной надежности крепления конических соединителей.
- Е.2.5 Любые выступающие части (например, крючки, скобы или кнопки) должны быть сконструированы таким образом, чтобы свести к минимуму риск зацепления за хирургические перевязочные материалы или другое оборудование.

Е.3 Другие конструктивные соображения

Супрагортанные трубки должны иметь гладкую наружную и внутреннюю поверхности. Поверхность механизма фиксации должна быть гладкой. Между наружной поверхностью дыхательного канала и точками крепления механизма фиксации должен быть плавный переход. На стороне пациента супрагортанной труби и в дыхательного отверстия не должно быть острых кромок.

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов национальным и межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного	Степень	Обозначение и наименование соответствующего
международного стандарта	соответствия	национального, межгосударственного стандарта
ISO 4135	MOD	ГОСТ Р 52423–2005 (ИСО 4135:2001) «Аппараты
		ингаляционной анестезии и искусственной
		вентиляции легких. Термины и определения»
ISO 5356-1	IDT	ГОСТ ISO 5356-1–2023 «Аппараты ингаляционной
		анестезии и искусственной вентиляции легких.
		Соединения конические. Часть 1. Конические
		патрубки и гнезда»
ISO 18190	_	*
ISO 18562-1	IDT	ГОСТ Р ИСО 18562-1–2022 «Оценка
		биосовместимости каналов дыхательных газов в
		медицинских изделиях. Часть 1. Оценка и
		проведение испытания в процессе менеджмента
		риска»
ISO 80369-7	IDT	ГОСТ Р ИСО 80369-7–2023 «Соединители малого
		диаметра для жидкостей и газов, используемые в
		здравоохранении. Часть 7. Частные требования к
		соединителям внутрисосудистого или подкожного
		применения»

^{*} Соответствующий национальный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного международного стандарта.

Примечание – В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичные стандарты;
- MOD модифицированный стандарт.

ГОСТ Р ИСО 11712-202_

Библиография

[1]	ISO 10993-7, Biological evaluation of medical devices — Part 7: Ethylene oxide
[0]	sterilization residuals
[2]	ISO 11135, Sterilization of health care products — Ethylene oxide — Requirements
	for the development, validation and routine control of a sterilization process for medical
	devices
[3]	ISO 11990, Optics and optical instruments — Lasers and laser-related equipment —
	Determination of laser resistance of tracheal tube shafts
[4]	ISO 14155, Clinical investigation of medical devices for human subjects — Good
	clinical practice
[5]	ISO 14408, Tracheal tubes designed for laser surgery — Requirements for marking
	and accompanying information
[6]	ISO 14971, Medical devices — Application of risk management to medical devices
[7]	ISO 16628, Tracheobronchial tubes – Sizing and marking
[8]	AAMI TIR 16, Process development and performance qualification for ethylene oxide
	sterilization — Microbiological aspects
[9]	AAMI TIR 20, Parametric release for ethylene oxide sterilization
[10]	BRAIN et al., The Intubating laryngeal mask. I: Development of a new device
	for intubation of trachea, British Journal of Anaesthesia. 1997, 79(6), 699-703
[11]	RENDELL-BAKER L., From something old something new, Anesthesiology.
	2000, 92(3), 913–918

УДК 615-47:006.354 OKC 11.040.10

Ключевые слова: супрагортанная трубка, соединители, дыхательное отверстие, дыхательный канал, требования, испытания